
Calhoun: The NPS Institutional Archive

DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1976-05

A program for the numerical solution of large

sparse systems of algebraic and implicitly

defined stiff differential equations

Franke, Richard

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/30101

Downloaded from NPS Archive: Calhoun

NAVA i

MONTEREY, CA

_NPS-5JFjiX6I)5_L_

/
MALP08TGRADUATE SCHOOL

Monterey, California

A PROGRAM FOR THE NUMERICAL SOLUTION OF LARGE SPARSE

SYSTEMS OF ALGEBRAIC AND IMPLICITLY DEFINED STIFF

DIFFERENTIAL EQUATIONS

by

Richard Franke

May 1976

Technical Report For Period

October 1975 - April 1976

Approved for public release; distribution unlimited

FEDDOCS
D 208.14/2:

NPS-53FE76051

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder Jack R. Borsting
Superintendent Provost

ABSTRACT

This report documents a program for the numerical solution of

large sparse systems of algebraic and implicitly defined stiff differen-
tial equations. The principal use is intended to be the solution of

differential equations arising from time dependent partial differential
equations when the finite element method is used to discretize the

space domain. The use of compact matrix storage techniques and iteration
for the solution of the quasi-Newton iterates in Gear's method makes
the program extremely efficient both in terms of storage requirements
and execution times.

Reproduction of all or part of this report is authorized.

This report was prepared by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER

NPS-53Fe76051

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A Program for the Numerical Solution of Large
Sparse Systems of Algebraic and Implicitly Define

Stiff Differential Equations

5. TYPE OF REPORT a PERIOD COVERED
Technical Report

d Oct. 1975 - April 1976

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

Richard Franke

8. CONTRACT OR GRANT NUMBERfaj

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Foundation Research Program
Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

61152N;RR 00-01-10;

N0001476WR60052

11. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, Virginia 22217

12. REPORT DATE

May 1976
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESSf// different from Controlling Office) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED

15a. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION ST ATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)

Gear's Method
Differential-Algebraic systems
Stiff equations
Sparse matrices
Finite element method

20. ABSTRACT (Continue on reverse side It neceasmry and Identity by block number)

This report documents a program for the numerical solution of large sparse
systems of algebraic and implicitly defined stiff differential equations.

The principal use is intended to be the solution of differential equations
arising from time dependent partial differential equations when the finite

element method is used to discretize the space domain. The use of compact

matrix storage techniques and iteration for the solution of the quasi-Newton

iterates in Gear's method makes the program extremely efficient both in terms
-

dd ,;
FORM
AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014-6601
|

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
,L<-UW1TY CLASSIFICATION OF THIS P AGE(When Data Entered)

of storage requirements and execution times.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(TW>»n Data Entered)

1.0 Introduction

This report documents a program for the solution of algebraic and

implicitly defined stiff differential equations. We were particularly

interested in solving very large systems of differential equations

arising from partial differential equations where the finite element

method has been applied in the space variables.

Our original goal was to use a compact storage scheme for the

large matrices involved and to use iteration to solve the linear

algebraic systems which occur. However, the resulting program is easily

adapted to different applications through user modifications accomplished

by replacement of one or two relatively simple subroutines. Thus the

program is a powerful one which can be used in a variety of applications.

Four examples, illustrating different matrix storage techniques and

different linear equation solvers are given in the appendix. Other

storage schemes and solution methods, e.g. symmetric Jacobian with

Cholesky decomposition, are relatively simple to implement.

In Section 2 a brief review of the integration scheme is given.

In Section 3 a discussion of differences between this program and the

one from which it was adapted is given. Section 4 is devoted to a

discussion of information concerning the use of this package.

2.0 Theoretical Background

Consider the system of N = m + I differential and algebraic

equations in y
±

ym »
v
i»

* * * »
V
£»

(1) F(y,y,t) + P(t) V = ,

with all or some of the initial values y (t),...,y (t~) ,v (t„) , . . . ,

v (t~) specified. Enough of the above values must be given in order

to determine the remaining values and initial values for any of the

derivatives, y-i>...,y which appears in equation (1). In equation (1)

,

P(t) is an N x I matrix, F is a vector with N components, and

V is a vector.

The program documented here is a modification of a program due to

Brown and Gear [1], The method of solution is a modification of Gear's

method for stiff differential equations [2], The application to differ-

ential algebraic systems was given by Gear [3], We will briefly describe

the method here for completeness, and refer the reader to the references

for more details.

Suppose that approximate solution values are known at a number of

equally spaced points, t _ ,t _~ t , , and are represented by

y ,...,y respectively. Let V(t -) be represented by

V . Use of a backward differentiation formula gives

, «(n) 1 , (n) (n-1) (n-k) .hy "J (a
Q y + a-L y '•+...+ a

fc
y) ,

where h = t. in - t. . The coefficients a. and 3--, are from Gear
l+l l i

[2] , p. 217. Substitution of this into (1) gives

(n)
a

(n)
,

r i n _l T>/ fc n ttC 11) _ n
(2) F (y

W
,
--SL. y

W + I , t) +p(t)J
8 nh

J Ln * n nB
o

V

as the equation which y and V must satisfy. In equation (2),

v 1 t
(n-1) (n-k).

^n
=

6Th
(a

l
y + • • • + a

k y) .

In general, equation (2) represents a system of nonlinear equations for

;ebrai(

(n),0

y and V . The method used for solving this system of algebraic

equations is a variant of Newton's method. The initial guess, y

is obtained by polynomial extrapolation using a Hermite polynomial

interpolating the known values y , y , ..., y . Thus

the predicted values has the form

._. (n),0 . - -(n-1) - (n-1) - (n-k)
(3) y ' =hS, y + a, y' + ... + a . y

K

± 1 n-K

The application of Newton's Method to equation (2) then yields the

corrector equation

(n),i+l _ (n),i

)=- F^ (n),i
' -Fh^'

1
- V^V v(n),i

•

r
(n),i+l _<n) ti / V

V - V

where J is the Jacobian matrix,

(5)
3y 6

Q
h 9y

Gear shows that the initial guess for V is not important

,

and thus V is used. Up to three iterations are performed on the

corrector equation. The matrix J is not evaluated at each iteration,

nor even at each timestep. J is evaluated whenever (i) the timestep

or order is changed, or (ii) the corrector iteration fails to converge

in three iterations.

If the corrector iteration fails to converge, the J matrix is

evaluated, unless it had already been evaluated at the current time.

If it has been evaluated at the current time, the timestep is reduced

by a factor of 4. In either case the step is then retired.

If the corrector iteration converges, the local error is estimated,

based on the fact that the local error is approximately proportional to

the difference between the predicted and corrected values of y .

For this purpose a relative error tolerance is used for large solutions

and an absolute error tolerance for small solutions. The root-mean-

square norm (Euclidean norm divided by the square root of the number of

components) is used for the vector with components e./ymax. , where

e. is the estimated local error in y. and ymax. = max (|y. |
, 1) .

1 X 1
0<k<n

1

If the error is larger than that specified by the user, an acceptable

timestep is estimated for the current order or order one lower, and

the step repeated. Up to three such failures are permitted, after which

an attempt is made to start over with a first order method.

When using a method of order q , the program takes at least

q + 1 steps before changing the timestep. Changes in timestep are

preceeded by calculation of the predicted timestep at current order and

order one higher and one lower. If the timestep can be increased by more

than 10%, the order corresponding to the largest possible timestep is

used. If the timestep cannot be increased by at least 10%, the current

order and stepsize are retained for at least 10 more steps.

After each step a test is made to determine whether time has

advanced to or beyond the input end time. Control is returned to the

calling program if it has.

At the initial call, no history of the solution is available, so

the program must begin with a first order method, taking two such steps

in accordance with the above description. The timestep must be suitably

small, again in accordance with the above. At the point the program can

begin to increase the order of the method and the timestep. Because

the Jacobian matrix must be generated whenever the timestep is changed,

it is not efficient to try too large a timestep initially. Because the

program rapidly finds the best order and timestep, it is relatively cheap

to underestimate the initial timestep compared to the cost of overestimating

it.

3.0 Differences compared with DFASUB

The principal differences between the SDESOL/LDASUB package and

DFASUB, and the reasons for incorporating them are as follows.

(i) The main goal of this revision was to generate a program which

could solve very large sparse systems of differential equations efficiently,

both in terms of storage requirements and execution time. We are

particularly interested in the solution of ordinary differential equa-

tions arising from partial differential equations where the finite

element method has been used to discretize the problem in space.

Large sparse problems require at least a different system of stor-

ing the Jacobian matrix and possibly the use of iteration to solve for

the quasi-Newton iterates in equation (2.4). Two such subroutine

packages, to be used with the basic subroutines, have been provided.

Another package using standard elimination techniques is also provided

and is convenient for smaller systems of equations. Use of any of these

options requires the user to supply a subroutine to evaluate his form

of the equations (1), and for efficiency, a subroutine to explicitly

evaluate the Jacobian. A subroutine to approximate a full Jacobian

through numerical differencing has been provided. With the exception

of a minor correction, this is the same as given in [1], While use of

this routine is convenient, it is inefficient and should be avoided

for large systems. It is anticipated that the user can provide his own

subroutine package, using his own storage scheme for the Jacobian, and

with a suitable equation solver for the Newton iterates. There should

be no need to disturb the basic package which carries out the time

integration.

(ii) For user convenience, without a major rewrite of DFASUB, a driver

routine, SDESOL, to be referenced by the user and which then communicates

with LDASUB was written. The chief function of SDESOL is to set up a

number of references to work storage areas required by LDASUB. In

addition, some testing of parameters is accomplished, and a subroutine

to calculate initial values of derivatives is called,

(iii) A subroutine to calculate initial values of derivatives, DERVAL,

has been provided. The routine provided requires that the first m

8F
rows of —^ be nonsingular, which does not need to be true in the

general case. For this reason, and others discussed in Section 4, the

user may need to provide either his own version of DERVAL to evaluate

the derivatives initially, or else he may supply initial values and a

dummy version of DERVAL.

(iv) Other changes made in generating LDASUB from DFASUB were to simplify

the code for the particular type of problem we wish to solve, while

others were to enhance the usability of the code. Some errors were

also corrected, notably two errors in coefficients for the fifth and

sixth order methods. DFASUB had the capability of computing various

elements of the Jacobian at different times if they had different

dependencies, with the possibility of inverting that part of the matrix

at that time, if it could be done. This could result in increased

efficiency in certain problems, at some expense in convenience, but for

our purposes it was not considered useful, and was removed. Therefore

only one call is made to evaluate the Jacobian. The Jacobian was

evaluated at the beginning of each timestep in DFASUB, but this has

been eliminated in LDASUB, in accordance with the description in Section

2. A subroutine, S2, was called from DFASUB to evaluate time dependent

terms whenever time was changed. This is reasonable, since the function

evaluation routine may be called several times at a given value of the

independent variable. We have removed this, preferring to test for a

new time in the routines where time dependent terms appear, then

evaluating and storing them internally to that routine when necessary.

This helps make the function evaluation more self contained, as well.

In DFASUB extra parameters in the calling sequence allowed the

user to communicate constants to the function evaluation and Jacobian

subroutines via DFASUB. We believe this is inefficient and confusing,

and removed this capability, preferring to communicate from the main

program to these subroutines via Common, or possibly through multiple

entry points.

The norm used for error tests in DFASUB is the Euclidean norm.

This has the undesirable property that for large systems the allowable

error criterion may be large. We therefore changed to the root-mean-

square norm in LDASUB, which is simply the Euclidean norm divided by

the square root of the number of components. One other change was

made in the error tests. As noted in Section 2, the error vector has

components e./ymax. , where e. is the estimated local error in the

i— variable y. , and ymax, = max (|y. |, 1) . In DFASUB the
1

<k<n
1

maximum was taken only up to the previous timestep, n-1 . This change

was incorporated because some of the problems in which we were interested

began with many components at zero, but which very rapidly became large,

12
around 10 or more. Without updating the value of ymax. , the

size of the timestep was artificially kept extremely small in order to

satisfy an unreasonable error tolerance. For this reason, the maximum

value of the component was updated before the norm of the relative errors

was computed. For problems where values range near to one, the modifica-

tion will result in no appreciable change in performance.

The printout of counters, timestep, time, and values of the dependent

variables was made an option through a parameter in the calling sequence.

An additional value printed is the order of the method being used.

DFASUB incorporated the capability of terminating if a certain

number of floating point overflows had occurred. This capability was

removed from LDASUB.

The final modification to the program was the incorporation of a

restart capability without having to begin again with a first order

method. This was accomplished by adding two entry points to LDASUB.

One, LDASAV, saves values internal to LDASUB, returning them to the

main program, where they can be saved for the time at which the calculation

is to be resumed. At that time, another entry point, LDARST, restores

those values internal to LDASUB, while other necessary values are

restored through the calling sequence.

4.0 Subroutine Descriptions

The description of subroutines is divided into two subsections.

The first deals with the basic integration routine and other subroutines

which make up the core package, and which should not be modified by the

casual user. The second deals with a set of supporting subroutines, at

least one of which must be supplied by the user since it defines his

system of equations. The others may be usable in the form given in

one of the examples, or can be defined by the user to accomplish his

desired implementation.

4.1 Basic Subroutine Package

4.1.1 Subroutine SDESOL

This routine is the only one which needs to be referenced by most

users. It serves as a driver for the integration routine, LDASUB.

SDESOL has a simpler calling sequence than LDASUB and relieves the

user of having to set up a number of auxiliary storage arrays. In

addition, the routine calls DERVAL to calculate the values of the

derivatives on the initial call.

The calling sequence is

CALL SDESOL (Y ,YL , T , TEND, NY ,NL ,M, JSKF ,MAXDER, IPRT ,H, HMIN ,HMAX , RMSEPS , W)

where the parameters are defined as follows.

Y - Input and output. An array dimensioned (7,NY). On the initial

call this array contains the initial values of the dependent

variables v., i=l , . .
.

, m in Y(l,i) . During execution
d3y

i hj

of the program the approximate values of r— • -rr is
d t J J *

stored in Y(j+l,i) . Here h is the current stepsize.

These values must not be changed between returns to the

calling program and subsequent entries to SDESOL. It is

possible to interpolate for values of the dependent variables

at times other than those calculated by using the formula

y.(t+s) =
I Y(j+l,i)

(t-
) , where q is the order formula

1
j=0 V

n
/

currently in use, and is obtained as q = |JSKF/10| .

YL - input and output. Array of linear variables, v., i=l, ..., I .

The user supplies initial values for these variables, and

during execution it contains current values of the linear

variables.

T - input and output. The user supplies the initial time, which

is updated to current time during execution.

TEND -input. Time at which the integration is to end. This is the

only parameter normally changed by the user between succes-

sive entries to SDESOL.

NY - input. The number of differential and nonlinear variables, m .

NL - input. The number of linear variables, £ . This may be zero.

M - input. The number of variables to be included in the local

error test. The error test will be performed for the variables

y. , i=l, ... 5
M . The M used is no greater than NY .

10

JSKF -input and output. An indicator: on input,

JSKF = indicates that this is the initial call to SDESOL.

Initial values of the derivatives are calculated and auxiliary

storage references are set up. This also indicates to

subroutine LDASUB to initialize parameters and begin with

a first order integration method.

JSKF > indicates a continuation of a previous call to SDESOL

JSKF = - 1 indicates a restart call. This is discussed

further in Section 4.1.2.

JSKF < - 1 may result from the user neglecting to test for

error returns from SDESOL. Because of this possibility,

the run is terminated with an appropriate comment when

JSKF < - 1 is input.

On output, JSKF normally is a two digit number, ± qp . q

is the order of the formula currently being used for the

integration, p is an indicator determining the type of

return. JSKF > , p = 1 is the normal return. Note that

SDESOL may be re-entered to continue the solution without

changing JSKF. JSKF < is an error return, with the value

of p indicating the error, as follows.

p = 1 error test failure for H _> HMIN

p = 3 corrector failed to converge for H > HMIN

p = 4 corrector failed to converge for a first order method

p = 5 error return from subroutine NUITSL

p = 6 error return from subroutine DERVAL

11

MAXDER- input. Maximum order method which should be used. The

highest order possible is six.

IPRT- input. Print control indicator.

<_ , no print from LDASUB

> , at each step, print number of steps, number of Jacobian

evaluations , current order being used, stepsize for next step,

current time, and current values of the dependent variables.

H - input and output. On initial call it is an estimate of the

timestep. During execution it is updated to the current value,

and on return contains the stepsize to be tried for the next

step. The input value need not be accurate. It is better to

underestimate than to overestimate the initial value. The

stepsize and order are varied to meet the local error tolerance

specified. The user does not normally change the stepsize

between entries to SDESOL.

HMIN- input. The minimum stepsize to be allowed.

HMAX- input. The maximum stepsize to be allowed.

RMSEPS-input. The error test constant. The values of the relative

local errors must have root-mean-square norm less than RMSEPS.

W - an array of auxiliary storage required by LDASUB. This array

must contain a total number of locations equal to the sum of

(i) 13*NY + 5*NL for arrays used in LDASUB, (ii) storage

for the Jacobian matrix, and (iii) any locations used in

processing the Jacobian, e.g., scratch storage used by an

equation solver.

12

4.1.2 Subroutine LDASUB

This subroutine is the basic integration routine and performs the

process in essentially the same manner as subroutine DFASUB. A brief

description is given in Section 2 and differences between this routine

and DFASUB are outlined in Section 3. Parameters in this routine in

which the user may be interested are stored in the W array, an argument

of subroutine SDESOL.

YMAX - array of maximum magnitudes of the independent variables,

y., up to the current time (or one, if less than one).

This is stored beginning at location 7*NY + NL + 1 of

the W array.

ER - This is the array of differences between the predicted

and corrected values of the variables, y. , and is

proportional to the estimated error. This array is

stored beginning in location 8*NY + NL + 1 of the W

array.

This subroutine incorporates a restart capability. In order to

restart from a previous point without beginning again with a first order

method, it is necessary to have saved a number of variables internal to

LDASUB, and then restore them before calling SDESOL again. To save the

internal parameters, the user calls subroutine LDASAV(SAV). Here SAV

is an array of length 29 in which the values to be saved will be stored.

In addition to SAV, the user must also save a number of arrays in the

calling sequence of LDASUB, and this is most easily accomplished by

saving the W array in the calling sequence for SDESOL. Once these

arrays have been saved, along with the other simple parameters in the

calling sequence (Y and YL need not be saved) , the user is free to

13

use the package to solve a different problem, or to terminate the computer

run, to be restarted later.

At the time the problem is to be restarted, the user calls sub-

routine LDARST(SAV), where SAV is the array of values obtained previously

by calling LDASAV. This restores internal values in LDASUB. The user

then calls SDESOL with the same simple parameters and the W array as

before, except that JSKF = - 1 and a new end time, TEND, is provided.

Restoration of values (including Y and YL) in LDASUB is completed

and solution of the problem resumes.

If the user desires to change the error tolerance, number of

variables in the error test, or maximum order to be used, the user

must make a new initial call to SDESOL, that is, set JSKF = .

4.1.3 Subroutine COPYZ

This subroutine simply transfers the contents of one array into

another array.

4. 2 Supporting Subroutines

This group of subroutinesmust , at least in part, be supplied by

the user. The user must supply at least one subroutine, DIFFUN. For

better efficiency, the user should supply a subroutine, JACMAT, to

explicitly evaluate the Jacobian, although a version which approximates

the Jacobian by numerical differencing is given in the appendix. To

take advantage of sparsity or other features of his problem, the user

will need to supply the subroutine NUITSL to solve the systems of

equations (2.4). For certain problems the user may have to supply

14

subroutine DERVAL to calculate the Initial values of the derivatives.

We discuss the requirements of these subroutines in turn.

A. 2.1 Subroutine DIFFUN

This subroutine simply evaluates the equations (2.1) at a given

time and yalues of y , y , and V . Other parameters in the function

definition must be transmitted from the calling program via COMMON or

some other device, determined by the user.

The calling sequence is

CALL DIFFUN (Y, YL, T, HINV, DY) , where the parameters are defined as

follows.

Y - input. Same as in SDESOL. This array contains the current

values of the variables y. and their (scaled) derivatives,

YL - input. Same as in SDESOL. This array contains the current

values of the linear variables.

T - input. Current time.

HINV - input. 1/h , where h is the current stepsize.

DY - output. Array of function values.

4.2.2 Subroutine JACMAT

This subroutine evaluates the Jacobian matrix J , equation (2.5)

at the given time and current values of the dependent variables, order,

and stepsize. A version of JACMAT which approximates J by numerical

differencing is given in the appendix. For maximum efficiency, the

user should supply the explicit representation of the Jacobian. Because

the Jacobian is used to solve for the quasi-Newton iterates, it is not

15

necessary for the Jacobian to be exact. Thus the user should consider

the possibility of approximations which reduce the total number of

computations in this step, with due regard for the fact that a smaller

timestep may be required to obtain convergence of the corrector within

three iterations.

The calling sequence for this subroutine is

CALL JACMAT (Y, YL, T, HINV, A2 , N, NY, EPS, DY, Fl , PW) , where the

parameters are defined as follows.

Y - input. Same as in SDESOL, Y contains the current values

of the variables y. and their (scaled) derivatives.

YL - input. Same as in SDESOL. This array contains the current

values of the linear variables.

T - input. Current time.

HINV - input. 1/h , where h is the current stepsize.

A2 - input. The constant a
Q
/$ from LDASUB.

N - input. Total number of variables.

NY - input. Number of differential and nonlinear variables.

EPS - input. Error constant from LDASUB, vfr 'RMSEPS.

DY - input. Array of current function values.

Fl - scratch array of N locations available for use by this

routine.

PW - output. The Jacobian matrix J , or an approximation,

calculated in JACMAT and returned to calling program.

This matrix is used in subroutine NUITSL and the storage

mode must agree between the two subroutines.

16

4.2.3 Subroutine NUITSL

This subroutine solves the equations (2.4) for the quasi-Newton

iterates. This subroutine will normally be supplied by the user,

although versions which solve the system by elimination methods and

iterative methods, respectively, are given in the examples in the

appendix. This subroutine will often be modified or replaced by the

user to take advantage of sparsity or other features of his problem in

connection with JACMAT, of course.

The calling sequence for this subroutine is

CALL NUITSL (PW, DY, Fl, N, NY. EPS, YMAX, NEWPW, KRET) , where the

parameters are defined as follows.

PW - input. The Jacobian matrix J computed in JACMAT.

DY - input. Right hand side of the linear system to be

solved.

- output. The solution is returned in the array Fl .

- input. Total number of variables.

- input. Number of differential and nonlinear variables.

- input. Error constant from LDASUB, vM~ • RMSEPS .

Fl

N

NY

EPS

YMAX - input. Array of maximum magnitudes of y. up to the

current time (or one if maximum magnitude is less than one)

NEWPW - input. Indicates whether a new J matrix has been

computed since the last entry to NUITSL.

- 1, indicates this is a new J matrix. If any

preprocessing, such as LU decomposition is to be done,

the preprocessing should be done and NEWPW set to zero.

= 0, indicates the J matrix is the same as on the previous

entry to NUITSL.

17

KRET - output. Return indicator.

= , normal return

= 1 , error return, solution of equations not obtained.

Note that the parameters EPS and YMAX are useful if an iterative

method is used for solutuon of the equations. Because the solution

represents corrections to the predicted value, and corrections to that,

the solution is small compared to the dependent variable values. Hence,

compared to the YMAX array, the error tolerance can be fairly large.

The following convergence criteria have been used, with great success.

Let 6u. denote the i— component of the difference between successive

iterates, with u. being the i— component of the current iterate.

Then the iteration is considered to have converged whenever

NY / 6u. \2 / .2

NY / 6u. \2

±t1 \ max(|u
i |

,e) /

Condition (i) requires convergence to 2 digits more accuracy than the

user has asked for in the solution of the system (2.1), relative to

YMAX. Condition (ii) requires the same relative accuracy in u. as is

asked for by the user in the solution of the system (2.1), unless the

solution is smaller than e , in which case the change is compared to

e rather than lu. I . This avoids difficulty if u. is close to zero.

The e above is EPS = vfc-RMSEPS, where M and RMSEPS are inputs to

SDESOL. Two versions of NUITSL incorporating iteration and this conver-

gence test are given in the appendix.

18

4.2.4 Subroutine DERVAL

This subroutine solves for, or otherwise supplies the initial values

of the derivatives, and possibly other variables. In some instances

it may need to be supplied by the user. The standard version of

DERVAL given in the appendix uses Newton's method to solve the first

m (=NY) of the equations (2.1) for y(t) , assuming values for y(t)

3F
and V(tn) have been supplied. To accomplish this, the matrix —

3 V-20 y

is needed, and this is obtained by calling JACMAT with h = 16 ,

A2 = -1 , and N = NY , implying NL = for this call. Special care

must be taken if in fact NL is not zero to assure that the matrix is

computed and stored properly. The matrix returned is then 16 — .

3y
A call to DIFFUN yields the function values

F(y(t
Q) , y(t

Q) , t
Q
) + PV(t

Q
) where y(t

Q
) is the current iterate.

20
Multiplication of the function values by 16 and a call to NUITSL

(again with N = NY) gives the Newton iterate. Of course, the same

sort of special care as necessary in JACMAT is necessary in NUITSL.

3F
Obviously the above scheme cannot work if —- is singular, such

3y

as it would be if one of the equations is algebraic. In this instance

the user must either devise his own version of DERVAL, or supply the

values along with a dummy version of DERVAL. In an extreme case the

user may simply set initial derivatives to zero. This will provide a

poor predicted value on the first step, and will force an artificially

small timestep for the first two steps. However, the overall penalty

is generally small, as appropriate (corrected) values are computed at

the first step, and after two steps the program quickly increases the

timestep.

19

The calling sequence for this subroutine is

CALL DERVAL (Y, YL, T, N, NY, DY, KERET) , where the parameters are

defined as follows.

Y - input and output. Same as in SDESOL. On entry Y(l,i)

contains the initial values of the variables y . On

return, the values of the derivatives are stored in Y(2 i) .

YL - input. Same as in SDESOL. This array contains the initial

values of the linear variables.

T - input, initial time

N - input. Total number of variables.

NY - input. Number of differential and nonlinear variables.

W - The scratch array from SDESOL, can be used in any way

needed by this subroutine.

KERET - output. Return indicater

= normal return

= 1 error return, initial values were not obtained.

5.0 Acknowledgement

The author wishes to express his thanks to Professors David Salinas

and Dong Nguyen of the Mechanical Engineering Department at the Naval

Postgraduate School. They supplied the initial applications and

encouragement for this work. They have continued to support it through

valuable discussions with the author throughout the development period.

20

Appendix 1: Program Listings

The following are listings of the basic subroutine package and

supporting subroutines which are of general use. For simple problems

the user only needs to supply a calling program and a subroutine, DIFFUN,

to evaluate the equations. Use of the NUITSL routine in computer facilities

which do not subscribe to the IMSL package will necessitate modifications

to replace LUDATF with another LU decomposition routine, and LUELMF

with another forward and backward substitution routine.

21

SLBROUTINE SDESOL (Y , YL ,T .TEND, NY ,NL i M, J3K F ,MAXDE R , I PRT ,H,HMIN, SOE ID
1H*AX,RMSEPS,W) SCE 20

C SCE 30
c S0E t, c
C SCE 50
C SLBROUTINE SCESOL !S A DRIVER ROUTINE FOR SUBROUTINE LCASU6. SDE 60
C ITS PURPOSE IS TO SET UP THE NECESSARY REFERFNCE5 TO A LARGE "DE 70
C BLOCK OF AUMLLARY STORAGE, AND DETAIN INITIAL VALUES OF SCE 60
C DERIVATIVES. SOE 90
C THE CALLING SEQUENCE FOR SDESOL IS SDE 100
C SDE 110
C CALL SDESOL(Y,YL,T,TEND,NY,NL,M, JSKF, MAXDER, I PRT, H, HMI N , HMAX, R^SEPS, W) S CE 120
C SDE 130
C WHERE THE PARAMETERS ARE DEFINED AS FOLLOW?. SCE 140
C SDE 150
C Y - ARRAY DIMENSIONED <7,NY). THIS ARRAY CONTAINS T\^= SCE 160
C CEPENDENT VARIABLES AND TH^IR SCALED DERIVATIVES. SDE 170
C Y(J+1,I) CONTAINS THE J-TH DERIVATIVE OF THE I-TH VARSDE 180
C IABLE TIMES H**J/ J-FACTORIAl , WHERE H IS THE CURRENT SDE 190
C STEPSIZE. ON FIRST ENTRY THE CALLER SUPPLIES THE SDE 20C
f INITIAL VALUES OF EACH VARIABLE IN Yd, I). ON Sue- SDE 210
C SEQUENT ENTRIES IT IS ASSUMED THE ARRAY HAS NOT SOE 220
C BEEN CHANGED. TO INTERPOLATE TC NON-MESH POINTS, SDE 220
C THESE VALUES CAN BE USED AS FOLLOWS. IF H IS THE SCE 240
C CURRENT STEPSIZE AND VALUES AT TIME T + E ARC SDE 250
C NEEDED, LET S = E /H ANC THEN SDE 260
C SCE 270
C JS SDE 280
C I-TH VARIABLE AT T+E IS SUM Y (J + l ,1)*S**J SDE 290
C J=0 SCE 300
C SDE 210
C THE VALUE OF JS IS OBT AINED IN THE CALLING PRCGRAM SCE 220
C BY JS = IAbS(JSKF/10) SCE 230
C YL APRAY CF NL VARIABLES WHICH APPEAL LINEARLY. SDE 24C
C T - CURRENT VALUE OF THE INCEPENCFNT VARIABLE (71*=) SCE 250
C TENC - END TIME SDE 260
C NY - NUMBER OF DIFFERENTIAL EQUATICNS AND NONLINEAR SDE 270
C VARIABLES. SDE 280
C NL - NUMBER OF LINEAR VARIABLES SDE 29CCM- NUMBER OF VARIABLES INCLUDED IN THE ERROR TEST SCE 400
C JSKF - AN INDICATOR JSEC 3CTH ON INPUT AND OuTPL T SDE 410
C ON INPUT, JSKF = -1 INDICATES A RESTART CALL TO SDE 420
C SDESCL. JSKF = INDICATES AN INITIAL C»LL TO SDE 420
C SDESCL. JSKF > INDICATES A CONTINUATICN OF THE SCE 440
C PREVIOUS CALL TO SDESOL. JSKF < -1 MAY HAVE RESULTcOSDE 450
C FROM THE USER NEGLECTING TO TEST FOR EPRCR RETURNS SCE 460
C FROM SDESCL. BECAUSE OF THIS POSSIBILITY, JSKF < -1 SCE 470
C RESULTS IN TERMINATION CF THE RUN WITH T\-~ SDE 460
C APPROPRIATE COMMENT. SCE 490
C ON OUTPUT, JSKF CONSISTS OF TwO DIGITS AND SIGN, SCE 500
C OR - QP. Q IS THE ORDER OF THE FORMULA CURRENTLY SCE 510
C eFING USED. P INDICATES THE TYPE OF RETURN, AS SDE 520
C FOLLOWS SCE S^C
C JSKF > 6, P = 1 IS THE NORMAL RETURN SDE 540
C JSKF < IS AN ERROR RETURN, HTH THE FOLLOWING SDE 550
C MFAMINGS. SDE 5fcO
C P = 1 ERROR TEST FAILURE FOR H > HMN SDE 570
C P = 3 CORRECTOR FAILED TC CONVERGE FO^ H > HMINSDE 580
C P = 4 CORRECTOR FAILED TC CONVERGE FOR FIRST SDE 590
C ORDER METHOD SDE 600
C P = 5 ERROR RETURN FROM SUBROUTINE <JU! T SL SDE 610
C P = 6 ERROR RETURN FROM SUBROUTINE DE^VAL SCE 620
C MAXDER - MAXIMUM ORDER DERIVATIVE THAT SHOULD BE USED IN SOE 630
C METHOD. IT M'JST BE NO GREATER THAN SIX. SCE 640
C IPRT - INTERNAL PR T NT CONTROL INDTCATCR FOk LDASU3. SCE 65C
C IPRT = NO PRINT SDE 660
C IPRT > PRINT COUNTERS, STEPSIZE, CURRENT TIMESOE 670
C AND VALUES OF DEPENDENT VARIABLES AT SDE 680
C EACH STEP. SDE 69C
C H - CURRENT STEPSIZE. AN INITIAL VALUE ^LST Br SUPPLIED SDE 700
C BUT NEED NOT BE THE ONE WHICH MUST BE USED, SINCE THESDE 710
C SUBRCUTINE WILL CHOSE A SMALLER ONE IF NECCESSAPY TO SDE 720
C KEEP THE ERROR PER STEP SMALLER THAN THE SPECIFIED SDE 730
C VALUE. IT IS BETTER TO UNDERESTIMATE THE INITIAL SOE 740
C STEPSIZE THAN TO OVERESTIMATE IT. THE STEPSIZE IS SCE 750

22

C NORMALLY NOT CHANGED PY THE USER. SDE 763
C HMIN - MINIMUM STEPSIZE ALLOWED SOE 770
C HMAX - MAXIMUM STEP5IZE ALLOWED «DE 780
C RMSEPS - THE ERROR TEST CONSTANT. THE CCjCT-mc AN-SQUARE OF SCE 790
C THE SINGLE STEP ERROR ESTIMATES, ERU), QTVID C C 3Y SCE 800
C YMAX(I) = (MAXIMUM TO CURRENT TIME DF Ytl)) MUST 3E SDE 81C
C LESS THAN EPS. THF STEPSIZE AND/OR THE CRCER SCE 820
C ARE VARIED TO ACHIEVE THIS. SDE 830
C W SCRATCH STOPAGE ARRAY. MUST EE AT LEAST 13*NY 5*NLSDE 840
C LOCATIONS! PLUS THOSE REQUIRED FOR STOPAGE 01= THE SDE 850
C MATRIX PW (SEE DESCRIPTION CF SUBROUTINE JACMAT). SCE 660
C THE STORAGE JF PW WILL NORMALLY REOUIRE NO MORE THAN SCE 87C
C N**2 + 2*N LOCATIONS, AND IF C0VPA1T STORAG c TECH- SCE 830
C NIQUES ARC USED, CAN Be MUCH FEWtK. SDE 890
C SCE 900
c SDE 910

DIMENSICN Y<7,1), YL(l), W(l) SOE 920
IF (JSKF.GT.O) GO TO 120 SDE 920
IF (JSKF.LT.-l) GC TO 140 SDE 940
N = NY + NL SCE 950
IF (JSKF.LT.O) GO TO 110 SCE 960

C SDE 97C
C IF THIS IS THE FI«ST ENTRY, OBTAIN VALUES CF THE DERIVATIVE?. SDE 980

CALL DERVAL (Y, YL ,T ,N, NY , W , KRE7R

)

SDE 990
IF (KRF.TF.NE.O) GC TC 130 SDE 1000

C SCE 1010
f NCW SET LP STORAGE BLOCKS IN THE W ARRAY. THIS NEEDS T BE DONE SHE 1020
C CNLY INITIALLY AND ON RESTARTS. SDE 1C20
C SDE 10AC
C THE ARRAY SAVE STARTS AT LOCATION 1 IN THE W ARPAY SDE 1050
C THE ARRAY YLSV STARTS AT LOCATION NSVL I ISf THE W mRRAY SCE 1060
C THE ARRAY YMAX STARTS AT LOCATION NrMAX IN THE V, ARRAY SCE 1070
C THE ARRAY ER STARTS AT LIGATION NER IN THE W ARiAY SCE 1C8C
C THE ARRAY ESV STARTS AT LOCATIJM NESV IN THE W ARRAY SCE 1090
C THE ARRAY Fl STARTS AT LOCATIJN NF1 IN THE In AR&AY SCE 1100
C THE ARRAY DY START? AT LOCATION NCY IN THE W 6R9AY SCE 1110
C THE MATRIX PW STARTS AT LOCATION NPW IN THE W ARRAY SCE 1120
C SDE 113C

110 NSVL = 7*NY+1 SCE 1140
NYMAX = NSVL+NL SCE 1150
NER = NYMAX+NY SDE 1160
NESV = NEP+NY SDE 1170
NF1 = NESV+NY SDE 1180
NCY = NF1+N SDE 1190
NPW = NCY+N SDE 1200

120 JS = JSKF SDE 1210
CALL LDASUB (Y, YL ,T ,TFND, N , vlY, A, JS , KF , MAXDEP , I PRT , t- , H^IN, HM AX ,

C CE 1220
1RMSEPS,W,W(NSVL) , M (NYMAX) , W (NER I , W (NE S V I , W (N Fl) , W (NC Y) , I* (MP W >) SDE 12 20

C SCE 1240
C CODE JSKF ON RETURN FROM LDHSUB SDE 1250
C SOE 1260

JSKF = ISIGN(JS*10 + IABS(KF),KF) SOE 1270
RETURN SDE 1280

130 JSKF = -6 SCE 1290
RETURN SDE 1200

140 PRINT 1, JSKF >CE 1210
STOP iCE 1320

C SDE 1220
C SCE 1240

1 FORMAT COIT IS AN ERROR TH ENTER SDESOL WITH JSKF = ',110// SCE 1250
1 ' RUN HAS EEEN TERMINATED.') SDE 126C
END SDE 1270

SLBROLTINE LCASU6 (Y, YL, T , TEND.M ,NY ,M , J ST ART ,KFLAG , M A XOR , I PRT f H,
lHMIN,HMAX,RMSEPS,SAVE,YL3V,YMAX,Ea,ESV, c l,DY,PW)

LCA 10
LCA 20

C LCA 20
C SLBROUTINE LCASUb IS A MODIFICATION OF SUBROUTINE DFASUE LCA 40
C kvHICH IS DUE TO R. L. EROWN AND C. W. GEAR. D C ASUH IS DOCUMENTED LCA 50
C IN THE REPORT LDA 60
C DOCUMENTATION FOR DFASUB— LCA 73
C BY R. L. EROWN AND C. W. GEAR LDA 80
C REPORT LILCDCS-R-73-575. JUlY 1973 LDA 90
C UNIVERSITY OF ILLINOIS AT UR EANA -CHAMP A I GN LDA 100
C URBANA, ILLINOIS 61801 LCA 110

23

C THIS REPCRT IS AVAILABLE FROM THE NATIONAL TECHNICAL INF DRM ATI ON' LDA 120
C SERVICE CF THE 'J. S. DEPARTMENT OF COMMERCE UNDER ACCESSION NUMBERLDA 130
C CCO-1469-225 . LCA 140
C LDA 150
C THE MODIFICATION HERE IS DOCUMENTED IN THE REPORT LDA 160
C A PRCGRAH FOR THE NUMERICAL SGLUTIOM OF LARGd SPARSE SYSTEMS OFLCA 170
C ALGEERAIC AND IMPLICITLY DEFINED STIFF DIFFERENTIAL EQUATIJNS LDA 180
C eY RICFAPC FRANKE LCA 190
C REPCRT NPS53FI76051, MAY 1976 LDA 200
C NAVAL POSTGRADUATE SCHOOL LDA 210
C MONTEREY, CALIFORNIA 93940 LCA 220
C LDA 230
C L0;i 240
C LDA 250
C ThE CALLING SEQUENCE FDR LDASUe IS LDA 260
C . „„ LDA 270
C CALL LCASUE (Y,YL,T,TEND,LV)4/y,M,JSTAPT,KFLAG,MAX0Rt IPRT,H,HMIN, LDA 280
C HMAX,RMSEPS,SAVE, YLSV, YMAX", E" , ESV , F 1 , DY, PW) LDA 290
C LCA 300
C WHERE THE PARAMETERS ARE DEFINED AS FOLLOWS. LDA 310
C Y - ARRAY DIMENSIONED <7 T

NY). THIS ARRAY CGNTAINS THE LDA 320
C DEPENDENT VARIABLES AMD THEIR SCALED DERIVATIVES. LCA 330
C Y(J+1,I) CONTAINS THE J-fw DERIVATIVE OF THE I-TH VARLDA 340
C IABlE TIMES H**J/J-FAC TORIAL, aHERE H IS THE CURRENT LOA 350
C STEPSIZE. ?N FIRST ENTRY THE CALLER SUPPLIES THE LCA 360
C INITIAL VALUES OF EACH VARIABLE IN Yd, I) AsD AN LCA 370
C ESTIMATE OF THE INITIAL VALUES CF THE CERIVATIVFS LCA 380
C IN Y(2,I>. ON SUBSEQUENT ENTRIES IT IS ASSUMED THAT LCA 390
C THE ARRAY HAS NOT BEEN CHANGED. TO INTERPOLATE T n LCA 400
C NON-MESH POINTS, THESE VALUES CAN BE USEC AS FOLLOWS. LCA 410
C IF H IS THE CJRRENT STEPSIZE AND VALUE? AT TIME T+E LDA 420
C NEEDED, LET S = E /H AMD THEN LCA 430
C LDA 440
C NO LDA 450
C I-TH VARIABLE AT T+E IS SUM Y

<

J+l , I)*S**

J

LCA 460
C J=0 LDA 470
C LDA 480
C THE VALUE OF NQ IS OBTAINED IN THE CALLING PROGRAM LDA 490
C BY NQ = JSTART. LDA 500
C LCA 51.1
C YL ARRAY OF NL = N - NY VARIABLES WHICH APPEAR LINEARLY. LCA 520
C THE USER SU°PLIES INITIAL VALUES FOR THESE VAR

I

ABLc S .L DA £30
C T - CURRENT VALUE OF THE INDEPENDENT VARIABLE (TIME) LOA 540
C TEND - END TIME LDA 550
C N TOTAL NUMBER OF VARIABLES LDA 560
C NY - NUMBER OF DIFFERENTIAL EQUATIONS AND NONLINFAR LCA 570
C VARIABLES. LDA 580CM- NUMBER OF VARIABLES INCLUDED IN THE ERROR TEST. LDA 590
C THIS NUMBER CAN BE NO GREATER THAN NY. IF IT IS LDA 600
C GREATER THAN NV, NY VARIABLES ARE USED IN tj-E ERROR LOA 610
C TFST. LCA 620
C JSTART - INPUT AND OUTPUT INDICATOR. LCA 630
C ON INPUT JSTART HAS THE FOLLOWING MEANINGS. LCA 640
C <0 THIS INDICATES A RE-START FROM A PREVIOUS LCA 650
C POINT FOLLOWING TcRMIINATIGN OF THF SUN OR LDA 660
C SOLUTION OF ANOTHER PRCBLFM DURING 1 HE SAMF LCA 670
C RUN. PARAMETERS IN THE CALLING SEQUENCE LCA 680
C MUST HAV C BEEN PRESERVED FROM THE PPFVIOUS LCA 690
C USE, PARTICULARLY THE ARRAYS LCA 700
C SAVE, YLSV, ESV, AND PW. LDA 710
C THESE ARRAYS MUST BE SAVED AFTER A CALL LDA 720
C TO SUBROUTINE LDASAV, WHICH ALSC SAVES LLA 730
C NECESSARY PARAMETERS INTERNAL TC LDASUB. LCA 740
C =0 INDICATES AN INI7IAL CALL TO LDASUB. THE LCA 750
C ROUTINE INITIALISES ITSELF, SCALES T H F LDA 760
C DERIVATIVES IN Y(2,I) AND THEN PERFORMS THE LDA 770
C INTEGRATION UNTIL T > TEND. LCA 780
C >0 INDICATES THE SOLUTION IS TO BE CONTINUED. LOA 790
C AFTER THE INITIAL ENTRY IT Io NEITHER LDA 800
C DESIRABLE NOR NCCESSAHY TO RE-ENTER WITH LCA 810
C JSTART = 0, SINCfc THIS RE- INI TI AL I ZES LOA 82C
C THE CODE, BEGINNING WITH A FIRST CRDER LCA 830
C METHOD AGAIN. LDA 840
C ON OUTPUT, JSTART IS SET TO THE VALUE OF NC, THE LDA 850
C ORDER OF THF FORMULA CURRENTLY BEING USEC. LCA 860

24

c KFLAG - THE COMPLETION CODE INDICATE, Wll THE FOLLOWING IDA 570
c MEANINGS i. :a 680
c +1 THE INTEGRATION WAS SUCCESSFUL l CA 590
c -1 cRRGR TEST EATLUGc fCR H > HMN LCA 900
c -3 CORRECTOR F»-lLED TO CCNVEnGE FOR H > HMIfv LCA 913
c -4 CORRECTOR FAIlEC TO CCNVFkGE FO" FIRST lCA 920
c ORDER METHOD LCA 920
c -5 ERROR RETURN FRQM SUBROUTINE NUITSL LCA 940
c MAX"1 5 - MAXIMUM ORDER DERIVATIVE THA~ CHCUuD OE LSfcD IN THE LCA 9 50
c METHOD. IT MUST BF NO GREATER THAN SiX. IF IT T

c

I. CA 960
c GREATER THAN SIX, THE MAXIMUM CRDEP U'ED WILL BE SIX .LCA 970
c IPRT - INTERNAL PRTNT CONTROL INHCATCrt LCA 980
c - NO PRINT LCA 9 90
c > PRINT COUNTERS, "TEPSIZE, CURRENT KME

AND VALUES OF DEPENDENT VARIABLES AT
LDA 1000

c LCA 1010
c EACH STEP. 1.0 A 1020
c H - CURRENT STEPSIZE. AN INlTiAL VALUE MUST BE SUPPLIED LDA 103J
c BUT NEED NOT BE THE 1\E wH CH wILL 6 F USED, SINCE T H fcLCA

SUBROUTINE WILL CHCCSE A SMALLER ONE ' F NECESSARY TCL CA
1040

c 1C5C
c KEEP THE ERROR o£R STEP SMALLER ThAN THE SPFCIFIEC LCA 1060
c VALUE. IT TS B CTTER TO UNDERESTIMATE THE INITIAL LCA 1070
c ST EPSIZF THAN TC OVFKEiTIMATE IT. THE STEPSIZF IS LCA 1080
r NORMALLY NOT CHANGED BY THE USER. LCA 1090
c HMINI - MINIMUM STEPSIZE ALLOWED LCA 1100
c HMAX - MAXIMUM STEPSIZE ALLOWED LDA 1110
c RMSE FS - THE ERROR TEST CONSTANT. THE POOT-ME AN-SQU^E OF LCA 1120
c THE SINGLE STEP ERROR ESTIMATES, ER (I) , DIVIDED BY

YMAXm = (MAXIMUM TO CURR C NT TIME OF Y(IM MUST PE
LDA 1130

c LCA 1140
c LESS THAN RMSEPS. THE STEPSTZF AND/OR CRDEF ARE LCA 1150
c VARIED ~1 ACHIEVE THIS. LDA 1 160
c SAVE - AN ARRAY O c LENGTH AT LEAST 7*NY LCA 1170
c YLSV - AN ARRAY CF LENGTH AT LEAS T NL LCA 1180
c YMAX - A VECTOR OF LENGTH NY WHICH CONTAINS TEE MAXIMUM LDA 1190
r OF EACH Y SE^N SO FAR. ON THE FIRST CALL, THESF WiLLLCA 1200
c BE INITIALIZED AS YMAX(I) = M t X (1 , | Y (1 , I) I) LCA 1210
c ER - A VECTOR OF LENGTH MY LCA 1220
c
c

ESV - A VECTOR GE LENGTH NY LDA 12;0
^1 - A VECTOR V LENGTH N = NY + *'L LDA 1240

c DY - A VECTOR i"- LENGTH N = NY + NL LCA 1250
c PW - AN ARRAY IN WHICH THE J MA"PIX CCMt>uTEC LOA 1260
c IN SUBROUTINE JACMAT WILL BE STORED. SIZE WHICH LCA 12 70
c MUST 9E ALLOWED IS DETERMINED BY THF STCRAGE TECH- LCA 1280
c NIQUE USED FOR IT, BUT NORMALLY WON'T BE MORE THAN LCA 129C
c U**l + 2*N LOCATIONS, THE LA T"ER 2*N BEING REQUIRED LCA 1200
c BY THE LINEAR EQUATION SOLVER. LCA 1210
c LOA 12 20
c -LCA 1330

OIMENSI IN Y(7,l), YL(1), SAVE(7,l), YMAX(l), ER(1), YLSV<1), P 1 (1)

t

1340
1. PERK 6,2), CUF(21), ESV(l), DY<1), PHI), SAV(l). A(29)

ENCE (A(8),BND), (A (9) , BR) , (A(10),F>, (A (1 1) . EDW \i) ,

=NQ1). (A(13) ,FNQ2) , < A { 14) , ENP3) , (A (15) , EPS) , (A(i6),EUP
rr>N«:K-)| < A (18) , PEP SH) , (A (19) , I D1U6) , (A (20) , I kEVAL) ,

K), (A(22) ,LCOPYL) . (A (2 3) , LCOP Y Y) , I A (24) , MA \r c R)

,

Ml), (A(26),NL), <A(27),NQ), (A(28),KS>, (A(29),Nw)

LDA 1250
ECUIV/SL LCA 12 60
1<A(12),)LDA 13 70
2,(A(17) LC« 1380
3 {/l <21) . LCA 1390
4(A(25), LCA 1400

c LCA 1410
c
c

1420
14 2CLDA

c TEE COE FFICIENTS IN THE PERT ARRAY ARE USED FOR tRPCR TESTING AND LCA 1440
c CHANGING LDA 14 50
c LCA 1460
c 1470

1480CATA PE RT/4.,9.,16. t 25.,36.,49.,9.,16.,25.,:-c.,49.,64.,l.,l.,.25, LQA
12.7889E -2,1.7C56 9E-3,6.8 3929E-5/ LCA 1490

c
c

1500
1510LDA

c THE ENTR: LCA 1520
c STABLE METHODS USED IN THIS PROGRAM AND ARE TO 3c THE MACHINE LCA 1530
c PBECI3I ON ECUIVALENTS OF THE FOLLOWING CONSTANTS. LCA 1540
c LOA 1550
c -1 LCA 1560
c -2/2 , -1/2 LCA 1570
c -11/6 , -1 , -1/6 LDA 1580
c -25/12 , -35/24 , -5/12 , -1/24 LCA 1590
c -137/60 , -15/8 , -17/2t , -1/8 , -1/120 LCA 16C3
c -147/60 , -2C3/90 , -49/48 , -35/144 , -7/240 , -1/720 LCA 1610

25

C LDA 1620
c LDA lfc30

DATA CO F/-1..-1. 5, -.5, -I. 833333,-1. ,-.1666 667, -2. 083 3 2 3, -1.453333, LCA 1640
1-.4 1666 6 7, -.041 b6

6

67, -2. 2 83 3 33, -1.8 75 ,-. 7082333, -. 125 •-.003 333233* LCA 16 50
2- 2. 45, -2. 2 5 55 56, -1.0 206 33, -.2430556, -.02 9 1666 7, -.00 13 8a 8 89/ LD.t 16 60
IF (JSTART) 100,110,150 LCA 1670

c L r, A lfc80
C IF THIS 15 A RESTART ENTRY, RESTORE Y A^D YL FROM IHE SAVF ANC LCA 1690
C YLSV ARRAYS, KHEP E THEY l* = RE SAVED BY A PREVIOUS CHI TC LDASAV. LDA 1700
C LDA 1?10

100 CALL C0PY2 (Y,3AVE,LC0PYY) LCA 1720
CALL COPYZ (YL, YLSV, LCOPYL) LCA 172C
GC T 15C LDA 1740

r L DA 1750
C IF THIS IS THE FIRST CALL, INITIALIZE Y.XAX, SCALE DERIVATIVES, ANDLDA 1760
C INITIALIZE INDICATORS AND SET ORDER TO ONE. LDA 1770
C FGR DOUeLE PRECISION, SET LCOPYL = 14*NY AND LC3PYL = 2*NL IF LD* 1780
C SLBROUTINE CCPYZ IS IN SINGLE PRECISION. LDA 179C
c LDA 180o

110 NL = N-NY LDA 161C
LCOPYY = 7*NY LCA 1820
LCOPYL » NL LCA 1830
vi = mincjcnyj lda 1840
EPS = SCRT(FLOAT(M))*RMSEPS LDA 1850
MAXCER = VIN0(MAXCR,6) LCA I860
IF (IPPT.LE.C) GO TO 120 LDA 1570
PRINT 3, N,ia,RMSEDS,TEND,H LCA 1880
PRINT 4 LDA 1890

120 NS - LDA 1900
NW = LDA 1910

C LCA 1920
CO 130 J=1,NY LDA 1930
YfAX(J) -- &l*AXl(l.,AbS(Y< 1, J))) LDA 1940

130 Y(2,J) = Y(2,J)*H LDA 1950
C LDA 1960

NC = 1 LDA 1970
eR = 1. LDA 1980
ASSIGN 190 TC IRET LCA 1990

c L 0A 2000
f SET COEFFICIENTS FOR THE ORDER CURRENTLY BEING USED. LDA 2010
C E IS A TEST FOR ERRORS OF THE CURRENT ORDER NO LDA 2020
C EUP IS TC TEST FOR INCREASING THE ORDER, ECWN FOR DECREASING THE LDA 2030
C CPCER. LCA 2040
c L DA 2050

140 K = NC*(NQ-l>/2 LDA 2060
CALL COPYZ (A(2),C0F(K+1) ,N0> LDA 2070
K = NG+1 LCA 2080
ICOUB = NC LCA 2090
ENC1 = .5/NC LCA 2100
ENC2 = .5/K LCA 2110
ENC3 = .5/<NC+2) LCA 2120
PEPSH = EPS**2 LDA 2130
E = PFRT(KC,1 l*PFPSH LDA 2140
cLP = D ERT(NC,2)*PEPSH LCA 2150
EQWN = PERT(NC,3)*PEPSH LDA 2160
BNC = <EPS*E,NQ3)**2 LCA '

UEVAL = 1 LDAUEVAL = 1

GC TO IRET, (190,200,490,570)
IF (H.FC.HNEW) GO TO 190

2170
2180

LCA 2190
150 IF (H.FC.HNEW) GO TO 190 LCA 2200

-LCA 2210
C IF CALLER HAS CHANGED H, RESCALE DERIVATIVES TO REFLECT THAT FNFW LCA 2220
C VsAS USEC CN THE LAST CALL. LCA 2230
c LDA 2 240

R = H/HNEH LDA 2250
ASSIGN 190 TO IRET LCA 2260
GC TO 61C LCA 2270

c LDA 2 280
C SET JS T ART TC NQ, THE CURRENT ORDER OF THE FETH°D, B=F3P= EXIT, LDA 2290
C AND SAVE THE CURRENT STEPSIZE IN HN^W. LCA 2200
C LCA 2310

160 JSTART = NQ LDA 2220
FNEW = H LCA 2330
RETURN LCA 2340

170 NS = NS+1 LCA 2250
IF (IPRT.LE.O) GO TO 180 LCA 2360

26

LCfi 2270
PRINT OAT* IP DESIRED BY USES LDA 2280

L r, A 2 390
PRINT 1, NS ,NW,NQ,H,T,(Y< 1,1).I=1,NY) LCA 2400
IF (NL.GT.O) PRINT 2, < YL (I) ,

I -1, NL) LDA 2410
180 CONTINUE LCA 2420

IF (KFLAC.LT.O) GO TO 160 LCA 242C
IF (T.Gfc.TcNC) GO TO 160 LDA 2440

LOtf 2 4 50
TAKE ANCTHtR STEP IF T < TEND LCA 246G

L |JA 2 4 70
JSTART = 1 LCA 2480

LDA 2 490
SAVE DATA FCP TRTAL WITH A SMALLER TIMESTEP IF THIS STEP FAILS LCA 2500

LCA 2 510
190 CALL COPYZ (SAVE, Y,LCOPYY) LCA 2520

CALL COPYZ (YLSV,YL,LCOPYL) LCA 2520
RACUM = 1. LCA 2540
KFLAG = 1 LDA 2550
HCLD = b LCA 2560
NCCLD = NQ LCA 2570
TCLD = T LCA 2580

2CC T = T*» LCA 2590
UNV = l./H LCA 2600

c LCA - tl0
C CCMPUTE FRFClCfED VALUES BY 5FFECTTVELY MULTIPLYING DcRlV^ T IVE LCA 2620
C VECTCR eY PASCAL TRIANGLE ^A~PIX LDA 2620
C LCfi 2 6 40
C LCA 2650

DC 210 J=2,K LCA 2660
J2 = K+J-l LCA 2670

C LDA 2680
DO 210 J1=J,K LCA 2690
J2 = J3-J1 LCA 2700

C LCA 2710
DC 210 1 = 1, NY LCA 2720

210 Y4J2,I) = Y(J2,I)*Y(J2+1, I) LCA 2730
C LOA 2740
C LCA 2750

DC 220 1 = 1, NY LCA 2760
220 ER(I) = C. LCA 2770

LCA 27SO
LDt 2 790

DC U° TC THREE COO ECTOR ITERATIONS. CONVERGENCE IS :6 T A[NEC WHENLO* 2800
CHANGES ARE LESS THAN 6ND WHICH IS DEPENDENT DN THE EP-SCR T EST LCA 2810
CCNSTANT. ThE SUM OF CORRECTIONS IS ACCUMuL^ED IN Efi(I). IT IS LCA 2820
ECUAL TO ThE K-TH DERIVATIVE GF Y TIMES H**K / (K-F AC r R I AL * A (K)) , LC* 2830
AND THUS IS PROPORTIONS TO THc ACTUAL ERRORS TO THE L3i»=ST PO*FR LCA 2640
OF H PRESENT, WHICH IS H**K. LCA 2850

LD A 2 860
LDA 2670

DC 270 L=l,2 LCA 2680
CAlL DJPFUN (Y, YL ,T,HINV, OY) LCA 2890
IF (IUFVAL.LT.1) CO TO 230 LDA 2903

L0 A 2 91C
IF THERE HAS BFE\ A CHANGE CF 3RDER 30. THERE HAS 3EEN TROUPLF LCA 2920
WITH CONVERGENCE, PW IS R E -t V ALUATED PRIOR TO STARTING T H- LCA 2930
CCRPECTCR ITERATICN. IWEVAL IS THEN SET TO -1 AS AN INDICATOR LCA 2940
THAT IT HAS EEEN DONE. NEWPw IS SET ^jNZERC TO i^iiiCt'z TO lCA 2950
c LBROUTINE NUITSL THAT A NEW PW HAS 3fcrN F0~v!D c 3. LCA 2960

LCA 2 9 70
CALL JACNAT (Y

,

Yl , T , HI NV , A (2) , N , NY , E PS , DY , F I . PW) LCA 2980
KFLAG = 1 '-CA 2990
IWEVAL = -1 LCA 3C00
NW = NW+1 LCA 2010
NEWPW = 1 LOA 3020

230 CALL NUITSL (PW , D Y , F 1 , N ,MY , E PS , YM AX , NEWP W

,

KRH ct
) LCA 3020

IF (K3R6T.NE.0) GC TO 600 LCA 3040
IF (NL.LE.O) GO TO 250 LCA 3050

LOA 3060
CO 240 I"U,NL LCA 3070

240 YL(I) = YL (I)-Fl< I+NY) LOA 3080
LDA 3090

25C CCNTINUE LCA 3100
3EL * 0. LOA 2110

27

C LCA 3120
DC 260 1=1, NY LOA 3130
Yd, I) = Y(1,I)-F1(I) LD6 3140
Y(2,I) = Y(2,I)*A(2)*Fll I

)

IDA 3150
EP (I) = ER<!)+F1(I) LCA 3160
DEL = DEL-MF1 (I)/ AM AX1 (YMAX (I),ABS(Y(1, I))))**2 LCA 3170

260 CONTINUE LDA 3180
C LCA 3190

IF (L.GE.2) ER = AMAX1 (.9* BR

,

DEL/DEL 1) LDA 3200
DELI = CEL LDA 3210
IF <AMIN1(DEL,BR*DEL*2.).LE.BND1 GO TO 330 LDA 3220

270 CONTINUE LDA 3230
C LDA 3240
C LD £ 3 250
C THE CCRRECTIOR ITERATION FAILED TO CONVERGE IN 3 TRIES. VARIOUS LCA 3260
C POSSIBILITIES ARE CHECKED FOR. IF H IS ALREADY HMIN AND PW HAS LCA 3270
C ALREADY BEEN RE-EVALUATED. A NO CONVERGENCE ;XIT IS TAKEN. LDA 3283
C OTHERWISE THE MATRIX PW IS RE-EVALUATED AND/OR (IN THAT ORDER) THELDA 3290
C STEP IS REDLCED TO TRY AND GET CONVERGENCE. LDA 3300

T = TOLC
IF (IWEVAL) 280,300,290

280 IF (H.LE.HMIN*1. 00001) GO TO 310
290 RACUM = PACLM*.25
300 CONTINUE

GC TC 560
310 KFLAG = -3

C

•LOA 3310

C RESTORE Y ANC YL AFTER CONVERGENCE FAILURE
C

320 CALL COPYZ (Y ,S A VE , LCOPYY

)

CALL COPYZ (YL,YLSV,LCOPYL)
H = HOLC
NC = NOCLO
GO TO 170

C THE CORRECTCP CONVERGED, SO NOW THE ERROR TEST IS MADE.
C

330 C = 0.

DC 340 1 = 1,

M

YN = AMAX1(AES(Y(1, I)),YMAX(I)

)

340 D = D*< EP(I)/YM)**2

UEVAL =

IF (C.GT.E) GO TO 380

C THE ERRCP TEST IS OKAY. SO THE STEP IS ACCEPTED. IF IQOUfi
C NCW BECOMES NEGATIVE, A TEST IS MADE TO SEE IF THE STEP SIZE
C CAN BE INCREASED AT THIS ORDER OR ONE HIGHER OR ONE LCWER.
C THE CHANGE IS MADE ONLY IF THE STEP CAN BE INCREASED PY AT
C LEAST 101. ICOUB IS SET TO IMC TO PREVENT FLRTHER TESTING
C FOR A WHILE. IF NO CHANGE IS *ADE, IDOUB IS SET TO 9.

IF (K.LT.3) GO TO 360

CC 350 J=3,K

DO 3 50 1=1, NY
350 Y(J,I) = Y(J,I)+A(J)*ER(I)

360 KFLAG = 1
ICOUB = IDCLE-1
IF (IDOLB) 410,370,510

370 CALL COPYZ (ESV,ER,M1)
GC TO 510

C THE FRRCP TEST FAILED. IF JSTART = 0, THE DERIVATIVES IN THE
C SAVE ARRAY ARE UPDATED. TESTS ARE THEN MACE T FIX THE STEPSIZt
C AND PERHAPS RECUCE THE ORDER. AFTER RESTORING AND SCALING THE
C Y VARIABLES, THE STEP IS RETRIED.

380 IF (JSTART. GT.O) GO TO 400

DO 390 1=1, NY

LDA 3320
IDA 3 3 30
LOA 3340
LDA 3 3 50
LCA 3360
LDA 3370
LDA 3380
LDA 3390
LDA 3400
LDA 3410
LDA 3420
LCA 3430
LDA 3440
1 OA 3 4 50
LCA 3460
LDA 3470
LDA 3480
LCA 3490
LDA 3 500
LDA 3 510
LCA 3520
LDA 3 5 30
LDA 3 540
LDA 3550
LDA 3560
LDA 3570
LDA 3580
LDA 3590
LDA 3600
LDA 3610
LDA 3620
LCA 3630
LDA 3640
LDA 3650
LDA 366C
LDA 3670
LDA 3680
LDA 3690
LDA 3700
LDA 3710
LDA 3720
LDA 3730
LDA 3740
LCA 3750
LDA 3760
LDA 3770
LDA 3780
LDA 3790
LDA 3800
LDA 3810
LDA 3820
LDA 3830
LDA 3840
LDA 3850
LCA 3860

28

390 SAVE(2,I) = ><2,I I

400

410

420

4 30

440

450

460

470

KFLAG =

IF (H.L
T = TOL
IF (KFL
PP2 = (

L =
IF (NG.LE.l » GO TC 4 30
C = 0.

KFLAG-2
E.HMIN) GO TO 5 50
C
AC.LE.-5) GO TO 530
C/E)**ENQ2*1.2

CC 420 J=i,M
YM = AMAXl(AeS(Y(1,J)),YMAX(J))

C = 0-M V(K, J>/YMJ**2

PRl = (

IF (PRl,
PR2 = P!

L = -I
IF (KFLAG. L7.0. OR. NQ.GE.MAXD6R) GO TO 450
C =

C/EDWN)**ENQ1*1.3
..GE.PP2) GO TO 430
•RI

DO 440
Yf = AM
D = D+<

PRl = (

IF (PRl
PP2 = P
I = 1
ft = 1./
IF (KFL
ICOUB =

GO TO 5
NEWC =

K = NEW
IF (NEW
Rl = A(

CC 470
Y(K, J)

J«1»FX
AX1 (AES(Y(1,J)),YMAX< J)]
(ER(JI-ESV< J) >/YM)**2

C/E
.GE
Rl

ANA
AG.
9

10
NC +
C-H
C.L
NEW

J = l
= E

UF)**E^G3+1.4
.FR2) GO TO 450

Xl(PR2t 1.5-5)
LT.O.OR.R.GE.i.l) C-0 TO 460

E.NQ) GO TO 480
Q)/FLOAT(NEWQ)

.AY
R(J)*R1

430 CCNTINUE

490

50C

510
520

IF THF STEP WAS OKAY, SCALE THE Y VARIABLES IN ACCORDANCE
WITH ThE NEW VALUE OF H. IF KFLAG < 0, HOWEVER, USE THE
SAVED VALUES (IN SAVE AND YLSV). IN EITHER CASE, IF THE ORJER
HAS CHANGED IT IS NECESSARY TO FIX CERTAIN PARAMETERS BY CALLING
THE PROGRAM SEGMENT AT STATEMENT NUMBER 140.

ICGUB = NC
IF (NEwC.EQ.NC) GC TO 490
NC = NEWC
ASSIGN 4S0 TC IRET
GO T" 140
IF (KFLAG. GT.O) GO TO 500
RACUM = PACUN*R
GC TO 560
R = AMAX1(AMIN1(HMAX/H,P) ,HMIN/H)
F = H*R
IfcEVAL = 1
ASSIGN 510 TC IRET
GC TO 610

CO 520 1=1,

H

YMX(I) = AKAX1(AES(Y(1,1)) , YMAXU))

GC TO 170

THE ERROR TEST HAS NOW FAILED THREE TIMES, SC THE DERIVATIVES ARE
IN BAD SHAPE. RETURN TO FIRST ORDER METHOD AND TRY AGAIN. TF
COURSE, IF NC = 1 ALREADY, THEN THERE IS NC HOPE ANC WE EXIT WITH
KFLAG = -4.

530 IF (NQ.EC.l) GO TO 540

LCA 3870
LDA 3E80
LDA 3890
LCA 3900
LDA 3910
LDA 3920
LCA 3930
LDA 3940
LDA 3950
LCA 3960
LOA 3970
LCA 3980
LCA 3990
LDA 4000
LCA 4010
LCA 4020
LOA 4030
LDA 4C40
LDA 4050
LDA 4060
LCA 4070
LDA 4080
LCA 4090
LDA 4 100
LCA 4110
LCA 4120
LDA 4130
LDA 4 140
I DA 4150
LDA 4160
LCA 4170
LOA 4 180
LDA 4190
LCA 4200
LDA 4210
LCA 4220
LDA 4230
LDA 4240
LCA 4250
LCA 4260
LCA 4270
LDA 4280
LDA
LDA

4 290
4 300

LDA 4310
LDA 4 3 20
LCA 4330
LCA 4340
LDA
LUA

4350
4360

LC«S 4370
LCA 4380
LCA 4390
LCA 4400
LDA 4410
I DA 4420
I DA 4 4 30
LCA 4 4 40
LCA 4 4 50
LCA 4460
LCA 4470
LCA 4480
L DA 4490
LDA 4 500
LCA 451C
LDA 4520
LDA 4530
LDA 4540
LDA *550
LDA 4560
LDA 4570
LDA 4 5 80
LCA 4 590
•LDA 4600
LDA 4610

29

NC = 1 IDA 4620
ID0U9 = 1 LCA 4630
ASSIGN 570 TC IRET LDA 4640
GC TO 140 LCA 4650

540 NCCLD = 1 LOA 4660
KFLAG = -4 LDA 467C
GO TO 220 LDA 468C

550 KFLAG = -1 t CA 4690
GC TC 170 LDA 4700

c LDA 4 710
C THIS SECTION RESTORES THE SAVED VALUES OF Y AND YL, SCALING T hE LCA 4720
C Y DERIVATIVES AS NECESSARY, AND THEN PEiURNS TO THE PREDICTS LTOPI.DA 4730
C L CA 4740

560 H = HOLC*RACUM LCA 4750
H = AMAXUHP IN, AMINKH.HMAX) I LDA 4760

570 PACUM = H/HCLC LCA 4770
Rl = 1. LDA 4780

C LCA 4790
CO 580 J = 2,K LCA 4800
Rl = R1*PACLM LCA 4810

C LDA 4820
DC 580 1 = 1. NY LDA 4830

580 Y(J,II = SAVE(J,I)*R1 LDA 4840
C LDA 4e50
C LDA 4860

CO 590 1 = 1, NY LDA 4870
590 Yd, I) = SAVFd.I) IDA 4880

C LDA 4890
CALL COPYZ (YL.YLSV.LCCPYL) LLA 4900
IkEVAL = 1 LDA 4910
GO TO 20C LDA 4920

6CC KFLAG = -5 LDA 4930
GC TO 16C LDA 494C

c L DA 4950
C THIS SECTION SCALES THE Y DERIVATIVES BY R**J LCA 4960
c LDA 4970

610 Rl = 1. LCA 4980
C LDA 4990

CC 620 J=2,K LDA 5000
PI = R1*R LCA 5010

C LDA 5020
CO 620 1=1, NY LCA 5030

620 Y(J,I) = Y(J,I»*R1 LOA 5040
C LDA 5050

CC TO IRET, (190,510) LCA 5060
c L DA 5Q70
C THIS SECTION ALLJWS FOR RESTARTS AFTER r OLVINC ANOTHER PROBLEM ORLDA 5080
C HAVING TERMINATED THE CURRENT COMPUTER kUN. SUBROUTINE LDASAV LDA 5090
C SAVES THE NECESSARY VALUES WHICH ARE INTERNAL TO LCASLB. FOR LDA 5100
C CCUBLE PRECISION, WITH COPYZ IN SINGLE PRECISION. THE NUMBER OF LCA 5110
C LCCATIONS TC PE SAVED &.ND RESTORED, LCOPYS AND LlOPYR. MUST fcE LDA 5120
C SET TC 56. LDA 5130
C IT IS ASSUMED THAT IN ADDITION TO THE VARIAPLES TN THE ARRAY A LCA 5140
C SAVED BY CALLING LDASAV, THE USER ALSO SAVES THE ARRAYS SAVE, LCA 5150
C YLSV, YMAX, ESV, AND PW. LDA 5160
C LCA 5170
C TC RESTART THE USER FIRST CALLS LDARST TC RESTORE THE VALUFi SAVECLDA 5180
C eY LDASAV, THEN RE-ENTERS LDASUB KITH JSTAPT < C, AND WITH THE LDA 5190
C CTHER PARAMETERS THE SAME AS RETURNED FROM THE LAST ENTRY TJ LDA 5200
C LCASUB, PARTICULARLY THOSE ARRAYS MENTIONED ABOVE. LCA 5210
C LCA 5 220

ENTRY LCASAWSAV) LDA 5230
LCOPYS = 29 LDA 5240
CALL COPYZ (SAV, A, LCOPYS) LDA 5250
CALL COPYZ (SAVE.Y.LCOPYY) LDA 526C
CALL COPYZ (YLSV, YL,LCOPYL) LCA 5270
RETURN LCA 5280

C LCA 5290
ENTPY LCARST(SAV) LCA 5300
LCCPYP = 29 LOA 5310
CALL COPYZ (A,SAV,LCOPYR) LDA 5320
RETURN LDA 5330

C LDA 5340
C LDA 5 350
C LCA 5360

30

c LDA 5^70
1 FC*MAT (2I5,I2,1°2E10.2,7E14.6/(32X,7E14.6)

>

LCA 5 2 80
2 FCRMAT (22X ,1F7E14.6) LDA 5 2 90
3 FCPMAT <«1 N =',13,' NL =',13,' KMSEPS = ',IPE9.2,' T.NC = ' LCA 5400

i ,£9.2,' 1- =«,E9.2//)
4 FCRMAT (« NS NW Q H',8X,'T ',8X,'YU,*) AMD YL(*)'//)

LDA 5410
LCA 5420

PNC LCA 5430

SLBfv3UTIN3 CCPYZ(S,Y,L)
OIMENSICN S(l) ,Y(ll

CCP 10

c
COP 20

30
c r.cp 40
c THIS SUBROUTINE CCFIE5 T H E ARRAY Y, OP LENGTH L, INTO TH!= InFJV S CC«= 50

I
CCF 60

70
IF(L.LE.C) RETURN C"P 80
CC 100 J=1,L

IOC S(J) = Y(J)
CCF 90
COP 100

RETURN COP 110
ENC CCF 120

5LBR0UTINE CERVAL (Y , YL , T , N, NY, W

,

KERE T
) DER 10

c DER 20
c THIS SUBROUTINE CALCULATES THE INTIAL VALUES uf THE DFRTVAT.VES DER 30

i
IN THE GENERAL CASE. IT IS WRITTEN SO THAT IT SHOULD WORK IF THF CEP 40
FIRST NY ECLA7I0NS ALL INVOLVE DERIVATIVES. l~ ATTEMPTS TV SOLVE CEP 50

c THE FIRST NY EQUATIGNS USING NEWTON'S METHCu, BUT SINCE IT 7HES CER 60
c TC EVALUATE CF/DY' BY CALLING JACMAT IN SUCH A WAY a S TO MAKL T H E DER 70
c CF/DY TERM INSIGNIFICANT, IT IS POSSIBLE THAT IT MAY FSR FuP THA T DEP 80
c REASON. IT MAY FAIL FOR OTHER REASONS, AS WELL. IF IT 00E5 FAIL CtP 90
c THE USER CAN SUPPLY HIS uWN VFRSION OF DLPVAL, OP MODIFY TH 4 S CEP 100
c ROUTINE IN SUITABLE FASHION. THIS ROUTINF ASSUMES T HAT VALuFS CF CEP 110
c THE LINEAR VARIABLES HAVE BEEN SUPPLIED PREVIOUSLY. IF 7HCSE CFR 120
c MUST B^ SCLVEC FOP SIMULTANEOUSLY WITH THE DERIVATIVES, THP USER DER 13U
c MLST SUPPLY HIS 0*N VERSION OF DERVAL. DrR 140
c OER 150
c THE CALLING SEQUENCE FIR THIS SUBROUTINE IS DER 160
c DcP 170
c CALL D c PVALlY,YL,T,N,NY~,W,KrPET) CER 180

s
DtR 190

WHERE THE PARAMETERS ARE DEFINED AS FCLLGwS CER 200
c DER 210
c Y - SAME AS IN LDASUB ANO SDESOL. Yd, II CONTAINS THE CER 220
c INITIAL VALUES OF THE DEPFImDENT VAPIA3LES. THf DEP 230
c VALUES OF THE DERIVATIVES ARE RETURNED IN Y(2,i). CEP 240
c YL - SAME AS IN LDASUB AND SOEsGL. THE INITIAL VALjES O p CEP 250
c THE LINEAR VARIABLES MUST BE SUPPLIED TO THIS VFRSIONLEi 260
c T - INITIAL TIME DEP 27C
c N - SAME AS IN LDASUB, TOTAL NUMBER OF VARIABLES CER 280
c NY - SAME AS IN LDASUB, NUMBER OF CIFFFRENTIAL EQUATIONS DEP 290
c AND NONLINEAR VARIABLES DEP 20C
c W - SCRATCH ARRAY W FROM THE CALLING SEQUENCE OF SDCSCL. CtP 210
c THIS CAN BE USED AS NEEDED IN TH IS SUBROUTINE. DCP 220
c KERET - RETUPN INDCATOP DER 3 20
c =0 NORMAL RETURN DER 240
c =1 ERROR RETURN DER 2 50
c
c

DER 2 60
370
28CDIMENSION Y(7,l), YL(1), W(l) DER

c CEP 390
CG 100 1=1, NY DER 400
W(2*N+II = AMAXK ABS(Y(1,1 1 1,1.) D c * 410

ICO Y(3,I) = 0. DEP 420
c DER 430

HINV = 16.**20 DER 440
KERET = C DEP 450
EFS2 » NY/1.E8 DER 4 60
EPS = SCPT(EPS2I DER 4 70

c DEP 480
DC 140 IT=1,10 DER 490

c DEP 500
DC 110 1 = 1, NY OcR 510

110 Y(2,I I = Y(2,I)/HINV DEP. 520

31

C DfcR 530
CALL DIFFUN (Y , YL ,T , HI NV , W) DEP 540
CALL JACMAT IY,YL»T,HINV,-i.,NY,NY,5PS,W,W(N+l) ,W(3*N+1)

)

DER 550
NEWPW - 1 DER 560

C DfcR 570
CC 120 1=1, NY DER 580

120 W(I) = MI)*HINV DER 590
C DER 600

CALL NUITSL <W(3*N+1) ,W,W (N+l) , NY, NY, E PS, W < 2+N+l) , NEWPW ,KRE 7

)

OER 610
IF (KPET.NF.O) GO TC 170 DER 620
ER = 0. DfcF 630

C HER 640
DC 130 1 = 1, NY DFP 650
Y(3,I) = Y(3,I)-W(N*I) DER 660

130 ER = ?R*U(N+I)/AMAX1(ABS(Y(3,I)) ,1.))**2 HEP 670
C DER 680

IF (EP.LT.EPS2) GO TO 150 DER 690
140 CCNTINUE DEP 700

C DER 710
GC TC 170 DER 720

C DEP 730
150 CC 160 1=1, NY DEP 740
160 Y(2,I) = Y(3,1) DER 750

C DER 760
RETURN DER 770

170 KERET = 1 DER 780
RETURN DER 790
ENC DER 800

SLEF3UTINE JACMAT (Y, YL , T , HI NV, A2 ,N ,N Y

,

EPS , DY, F 1, PW) JAC 10
c JAC 20
C JAC 3C
C SLBPOUTINE JACMAT IS (USUALLY) SUPPLIED BY THE USER. ITS PbRPCSE JAC 40
C IS TO EVALUATE THE J MATRIX NEEDED WHEN THE CORRECTOR EQUATION JAC 50
C IS SnLVEt eY NEKTON'S METHOD. THIS VERSION APPROXIMATES JAC 60
C J BY NUMERICAL CIFFERENCING AND USES FULL STORAGE MOLE JAC 70
C IN AN NXN MATRIX. JAC 30
C JAC 90
C JAC 100
C JACMAT CALCLLATES THE MATRIX JAC 110
C JAC 120
C DF A2 DF JAC 130
C J = ----- — jAC 140
C CY H DY' JAC 150
C JAC 160
C THE CALLING SEQUENCE FOR THIS SUBROUTINE IS JAC 170
C JAC 180
C CALL JACMAT(Y,YL,T,HINV,A2,EPS,N,NY,DY,F1,PW) JAC 190
C WHERE T|-E PARAMETERS ARE DEFINED AS FOLLOWS. JAC 200
C JAC 210
C Y - SAME AS IN LDASUB AND IN SDESOL. ON INPUT TO 1'HIS JAC 220
C SUBROUTINE THE ARRAY CONTAINS CURRENT VALUES Of THE JAC 230
C DEPENDENT VARIABLES AND THEIR (SCALED) DERIVATiVES. JAC 240
C YL SAME AS IN LDASUB AND IN SDESCl. ON INPUT TO 7FIS JAC 250
C SUBROUTINE THE ARRAY CONTAINS CURRENT VALUES OF THE JAC 260
C LINEAR VARIABLES. JAC 270
C T - CURRENT TIME JAC 280
C HINV - 1/H , WHERE H IS THE CURRENT STEPSIZd JAC 290
C A2 A(2) FROM LDASUB. JAC 300
C N - SAME AS IN LDASUB, TOTAL NUMBER OF VARIABLES JAC 310
C NY - SAME AS IN LDASUB, NUMBER OF DIFFERENTIAL EQUATIONS JAC 320
C AND NONLINEAR VARIABLES JAC 330
C EPS - L2 ERROR CONSTANT USED IN LDASUBl JAC 340
C DY - ARRAY OF FUNCTION VALUES A' CURRENT VALUES OF THE JAC 350
C VARIABLES, INPU T TO JACMAT. JAC 360
C Fl - SCRATCH ARRAY OF N LOCATIONS WHICH CAN BE USED EY JAC 370
C THIS SUBROUTINE IN ANY WAY NEtCED. JAC 330
C PW - J MATRIX, OR APPROXIMATION, CALCULATED IN JACMAT ANDJAC 390
C RETURNED TO CALLING PROGRAM. THIS MATRIX IS USED IN JAC 400
C SUBROUTINE NUITSL AND STORAGE MODE MUST AGREE BETWEENJAC 410
C THE TWO SUBROUTINES. JAC 420
C JAC 430
C jAc 440

DIMENSION DYI1), Y(7,l), YL(1), Fill), °W(1) JAC 450

32

NL = N-NY JAC 460
N'N = N*N JAC 470

C JAC 460
CC 100 1=1, NN IAC 490

100 Phd) = 0. JAC 530
C JAC 510
C JAC 520

CC 12C J=1,NY JAC 530
F = Y(1,J) JAC 540
E = Y(2,J) JAC 550
* = EPS*AMAXHEPS,ABS<F),ABS<E)) JAC 560
Yd, J) = Y(1,J)+R JAC 570
Y(2tJ) = Y(2,J)-A2*R JAC 580
CALL DIFFUN (Y,YL ,T,HINV,F1) JAC 590

C JAC 600
CC 110 1=1,

N

JAC 610
110 PW(I + (J-lT*M = (Fl(I)-0Y(I >)/R JAC 62C

C JAC 630
Y(2,J) = F JAC 64C

12C Yd, J) = F JAC 650
C JAC 660

IF (NL.EC.O) GO Yd 150 JAC 670
C JAC 680

CC 140 J=1,NL JAC 690
F = YL(JJ JAC 700
R = EPS**MAX1(EPS,ABS(F)) JAC 710
YL(J) = YUJJ+R JAC 720
CALL DIFFUN (Y, YL ,T , HI NV , F 1) JAC 730

C JAC 740
CC 130 1=1,

M

JAC 750
130 PWU+U+NY-1)*N) = (F1(II-JY(!)I/R JAC 760

C JAC 770
140 YL(J) = F JAC 780

C JAC 790
150 CCNTINUE JAC 600

RETURN JAC 810
PMC JAC 820

SUBROUTINE NUITSL (PW, OY, Fl , N ,NY

,

EPS , YMAX, NEWPW , KRET) NUI 10
c NUI 20
C THE PURFCSE OF THIS SUBROUTINE IS TO SOLVE A NUI 30
C LINEAR SYSTEM OP EQUATIONS FOP THE NEWTON ITERATES WHEN THF NUI 40
C CORRECTGP EQUATION IS BEING SOLVED. UPON ENTRY TO THIS SUBaCUTINENUI 50
C THE SYSTEM CF EQUATIONS TO BE SOLVED IS J W = - c

, WFFRE NUT 60
C J IS STORED IN PW UPON ENTRY NUI 70
C WIS RETURNED IN Fl NU! 80
C -F IS STCRED IN DY UPON ENTRY WUI 90
C NUI 100
C THIS SUBROUTINE IS GENERALLY SUPPLIED BY THF USER, ALTHOUGH THERE NUI 110
C ARE SOME STANCARQ FORMS AVAILABLE. FOR EXAMPLE, THIS \/ERSIJN NUI 12C
C ASSUMES THAT PW IS STORED IN FULL STOPAC-E MODE IN AN NXN MATRIX. NLI 130
C IF NEWPW = 1, AN LU DECOMPOSITION IS DONE, NEWPW IS SET T ZERO NUI 140
C Arc FORWARC AND BACKWARD SUBSTITUTION FOR THE SOLUTION IS DGNE. NUI 150
C IF NEWPW = 0, ONLY FORWARD AND BACKWARD SUBSTITUTION FOR THE NUI 160
C SOLUTION IS NECESSARY. NUI 170
C NUI 180
C NOTE THAT THIS VERSION OF NUITSL REQUIP r S THAT PW HAVE N**2 + 2*fJ NUI 190
C LOCATIONS SINCE 2*N LOCATIONS ARfc US C D BY THE IMSL LINEAR EwL A TIONNUI 200
C SCLV5P. NUI 210
C NUI 220
C NGTE THAT THE PARAMETFRS EPS AND YMAX A^.E LSEFUL IF aN ITERATIVE NUI 230
C METHOD IS USED TO SOLVE THE SYSTEM OF EQUATIONS. MUI 240
C NUI 250
C THE CALLING SEQUENCE FOR THIS SUBROU T INE IS NUI 260
C NUI 270
C CALL NUITSL (PW,DY ,F1,N, NY, EPS, YMAX, NEWPW, KPET) NUI 280
C NUI 290
C WHERE THE PARAMETERS ARE DEFINED AS FOLLOWS. NUI 300
C NUI 310
C C W THE J MATRIX CALCULATED IN SUBROUTINE JACMAT NUI 320
C DY - THE RIGHT HAND SIDE OF THE LINEAR SYSTEM TO 3E SOLVEDNUI 330
C Fl - THE SOLUTION IS RETURNED IN THE ARRAY Fl NUI 340
C N - SAME AS IN LDASUB, TOTAL NUMBER OF VARIAfiLtS NUI 350
C NY SAME AS IN LDASUB, NUM3FR OF C IFFEREN T

I A L EQUATIONS NUI 360

33

C AND NONLINEAR VARIABLES
C EPS - L2 ERROR CONSTANT USED IN ..DASUB
C YMAX - MAXIMUM VALUES OF Yd, I I S = EN UP TO THE CURRENT TIME
C NEWPW - INDICATES WHETHER A NEW J MATRIX HAS BEEN COMPUTED
C =1 INDICATES A NEW J MATRIX HAS BEEN COMPUTED
C SINCE THE LAST ENTRY TO NUITSL. NEWPW
C SHOULD BE SET TO ZERO IF SOME PREPROCESSING NUI
C SUCH AS LU DECOMPOSITION MUST BE DONE CN A
C NEW J MATRIX.
C =0 INDICATES THE J MATRIX IS THE SAME AS V.HEN
C NUITSL WAS LAST ENTERED
C KRET - RETURN INDICATOR
C =0 NORMAL RETURN
C =1 ERROR RETURN. SOLUTION OF EQUATIONS CCULD
C NOT BE OBTAINED.
C
c

DIMENSION Pbd), DY(1), Fill), YMAXd)
NL = N-NY
IF (NEWPW. ECO) GO TO 100
NEWPW
NN = N**2*l
NNN = NN+N
CALL LUCATF (PW.P W,N ,N ,0, Dl , D2, PWCNN) , PW (NNN) , Fl , I ER

>

IF (IER.EQ.O) GO TO lOO
KPET * 1

RETURN
IOC CALL LUELMF (PW,DY,PW(NN) ,N,N,F1)

KRET =
RETURN
END

SUBROUTINE CIFFUN <Y,YL,T ,HINV,DY)

C
C SUBROUTINE CIFFUN IS SUPPLIED BY the USER. ITS PURPOSE IS 7C
C EVALUATE THE FUNCTIONS AT CURRENT VALUES OF THE VARIABLES.
C
C THE CALLING SEQUENCE FOR THIS SUBROUTINE IS
C
C CALL DIFFUN(Y,YL,7,HINV,DY)

C WHERE THE PARAMETERS ARE DEFINED AS FOLLOWS.
C
C Y - SAME AS IN LDASUB AND SDESOL. ON INPUT TO THIS
C SUBROUTINE THE ARRAY CONTAINS CURRENT VALUES OF THE
C DEPENDENT VARIABLES AND THEIR (SCALED) DERIVATIVES.
C YL - SAME AS IN LDASUB AND SDESOL. ON INPUT TO THIS
C SUBROUTINE THE ARRAY CONTAINS CURRENT VALUES OF THE
C LINEAR VARIABLES.
C T - CURRENT TIME
C HINV - 1/H . WHERE H IS THE CURRENT STEPSIZE
C DY - RETURNED ARRAY OF FUNCTION VALUES.
C
c

DIMENSKN Y(7,1),YL(1),DY(U
C
C DEFINE YOLR FUNCTION HERE
C

RETURN
END

NUI 2 70
NUI 380
NUI 290
NUI 400
NUI 410
NUI 420
NUI 430
NUI 440
NUI 450
NUI 460
NUI 470
NUI 480
NUI 490
NUI 500
NUI 510
NUI 520
•NUI 530
NUI 540
NUI 550
NUI 560
NUI 570
NUI 580
NUI 5S0
NUI 600
NUI 610
NUI 620
NUI 630
NUI 640

650NUI
NUI 660
NUI 670

34

Appendix 2 : Examples

Example 1: This example is the problem proposed by Gear [3]. The

system of equations is

7
4

y ±
- S + (R-y,)

Z
+ I b4A y A

= , i = 1, 2, 3, 4+ (R-y
±
) + I b y = , i = 1

j=l J J

1 ?where R = «•
2, y • anc^

i=l
X

l
4

?S4J (R-y,) , and
i=l

y5
+ y l y 6

+ y l y6
= °

2y
6
+ y e - H + v

i
- 1 -

e_t
- °

v
i

- v
2
+ y i n °

V
l
+ V

2
+ 5y

l y 2
=

° *

In the above b- n = b__ = b„_ = b,, = 447.501
11 22 33 44

b
12

= "b 34 " b
21

= "b43 " " 452 - 499

b
13

= "b 24 ' b
31 " "b

42
=

" 47 - 499

b
14 - "b

23 ' b
41 '

"b
32 ' " 52 - 501

•

The initial conditions are

y . = 1 , i=l, 2, 3, 4 .

y5 = y = i

V
x

= - 2 , V
2

= - 3 .

3F
Note that a different version of DERVAL is necessary since — is singular,

3
y

35

1C

CIM
CM
DAT

1 47
2 44
OAT

1 1.
CAL
CAL
CO

I G(I

DC
Yd
Yd
Yd
YL(
YL(
JSK
CAL
Pfil
FCR
STC
END

ENSI
MSN
A GI
.49?
7.50
A \,
e-4,

(7,6),YL(2> ,W<150>,3! (16)
/G(16)
.501.- 452. 49 9, -4 7. 499, -52. 5 01, -4 52. 499, 44 7. 5 J 1,32.501,
. 499, 5 2. 501, 4t7. 501, 452. 499, -52. 501,47.499,452. 499,

L,N,REP3,HMAX,HMIN,H,T,TEND/8,fe,2,6,l.E-3,=.E2,l.E-l?,

EC

8 1 =

)
=

10 I

,1)

,5)

if.
2) =

F =

L SD
NT 6
MAT(
P

2K Y
/Cfc T

/447
,-47
1/
NY,N
u. 1

1

RSET
PSET
1,16
GI (I)

= 1,4
= -1.
= 1.
= 1.
-2.
-2.

ESCL(Y f YL,T,TEND,NY,NL,M,JS<F,6,l,H,H*t*,l-mx, :>EP5,W)
,JSKT
'C

.F3/
(207,256,-1,1

)

(208,256,-1,1)

JSKF =',I4)

10

20 S

SIB
CC*
CAT
DIN
IF(
TNT
TCL
CCN
3 =

s =

DC
<; =

25
30

5C

ICO

ROUT
M3N
A TO
E.M5I
T.EO
ERM
D =

TINU
(Y(
0.

20
c

DY(
CC
DY(
CCN
CY(
DY(
DY(
CY(
RET
fcNC

30 I

I I
=

25 J
I)

=

TINU
5) =

6) =

7) -

8) =

URN

A'E CIFFU.N, (Y.YL.T.hlNV.DY)
'CAT/G(4,4)
.C/-13.459/
* Y(7,l), YL(l),DY(1 I

,TCLD)GO Tl 10
;

E X P < -T)

id) -» Yd, 2) + Yd, 3) + Yd, 4))/2.

1,4
(R - Yd, I))**2/2.
1,4
hINV*Y(2,I) - S + (R - Y(l,ill**2
1,4
CY(I) « G(I,J)*Y(1, J)

•-INV*(Y(2,5) + Yd, 1)*Y(2,6) + Y (2 , 1) *Y< 1 , 6))

2.*Y(1,6) + Yd,6)**3 - Y(l,l) + YL(l) - l.-TVTrR'
YL(1) - YL(2) + Y(l, 1)*Y(1,6)
YL(1) + YL(2) + 5.*YI1,1I * Yd, 2)

SIB ROUTINE CERVAL(Y,YL,T,N,NY,rt ,KE C ET)
CIMEMSI IN Y(7,l), YL(1) ,rt(1)
KERET =

CG 50 I=1,NY
Y (2 1 1) = 0.
HINV = 1.
CALL CIFFUN(Y,YL, T,HINV,WI
CC 100 1=1, NY
Y(2,I) = -MI)

RETURN
END

36

Example 2: This example is a small one, contrived to illustrate the

possibility of derivatives entering in a nonlinear fashion. The equations

are

y ±
- 98Yl + 98y

2
=

(y
x

)

2
+ Y 2

- 198
y;L

+ e
_t

y
±
+ 199y

2
=

v, - y, - y
2

-

The initial conditions are

y l
= y 2

= 1
»
V
l

= 2
'

Note that we have supplied the explicit expression for the Jacobian.

Either JACMAT or a modified version of DERVAL must be supplied as the

numerical difference approximation to the Jacobian causes DERVAL to

fail.

37

DIMENSICN Y(7,2) , YL (1) ,W(50

»

DATA NtNY»NL»^tREPSiHMAXtHMIN»HtTiTEND/3i 2, 1, 2» 1* E-5, 25. » l.E-10,
1 l.E-4,C..5C./
Y(l,l) = 1.
Yd, 2) = 1.
YL(1) = 2.
JSKF =
CALL SDESCL (YtYL,T tTEND ,NY,NL t M, JSKF f 6, 1 ,

h

f HMlN t HMAX, REPS t W

)

PRINT 6,JSKF
6 FCPMAT('0 JSKF = ' ,14)

STCP
ENC

SUBROUTINE CIFFUN (Y , YL

,

T , HINV, OY

)

DIPENSICN Y (7,1), YL (1) ,DY(1)
DATA TCLC/-79.03/
IFU.EQ.TOLUGO TO 10
TKTERM = EXP(-T)
TCLD = T

10 CONTINUE
DY(1) = Y(2,1)*HINV - 98.*Y(1.1» + 99.*Y(1,2)
DY(2) = (Y(2,1)*HINV)**2 Y(2,2)*HINV - (196. - T MTE RM)*Y (1 , 1) +

1 199.*Y(1,2)
DY (3) = YL(1) - Y (1,1) - Y(1,2)
RETURN
ENC

SUBROUTINE JACMAT(Y t YL,T,HINV,A2,N.NY,E°5,CY,Fl,PW I

CIMENSTCN Y(7,ll, YL(1),F1(1),DY(l),PW(Mt i)
AH = A2*FINV
CO 100 1=1,

N

CC 100 J=1,N
ico pmi ,j) = 6.

PV« (1 1 1

)

= -AH - 98.
Pin (1 »2) = 9S.
PW(2,1) = -2.*AH*Y(2,1)*HINV - 198. + cXP(-T)
Pk'(2,2) = -AH + 199.
IF(NL.LE.O)PETURN
PM2.1) = -1.
PM3,2) = -1.
PM3.3) = 1.
RETURN
ENC

38

Example 3: This is another contrived example, this one to illustrate

the use of one type of sparse matrix storage, along with the use of

iteration to solve the equations (2.4). The system of equations is

A y + B y = ,

where

A =

7 -3 -1

2 8

1

3 5

-1 A

-2 6

B -

.3 .1 -.2

1 3

1

10 20

5 6

lo 57 100

The initial conditions are

y1
= 1000

y 3
= -25

y4 - io

y5
= o

y 6
= -1000

39

The matrix storage scheme used for A, B, and the Jacobian,

since it has nonzero elements in the same positions as A and B , is

that outlined by Gustavson [4], Briefly, one stores a pointer array

(here called JS) which indicates the initial position of new elements

in two other arrays, one of which (here called JN) gives the column

number of the element stored in the corresponding position of the

coefficient arrays (here called A and B)

.

Thus, for the above problem the arrays stored are

JS: 1 4, 6-^7-^ 9^~JL1 13

4 6^2 """l ±1

A : 7-3-1 8 2 1 5-3 4-1
4

-2

B : .3 .1 -.2 20 10 5 100 57

The elements of the i— row are stored beginning at location

JS(i) of the array A , and in particular A(JS(i) + k) is the element

in the i— row and JN(JS(i) + k) — column of A , for k = 0, 1, ...,

JS(i+l) - JS(i) - 1 . For our purposes it is necessary to access the

diagonal element easily, so we have required that the diagonal element

be the first element stored for a given row. This means that

JN(JS(i)) = i , i=l, ..., n . Note that JS(i) is the number of nonzero

elements in rows 1 through i - 1 , and that JS(n+l) must be defined as

the total number of nonzero elements.

Problems similar to the above arise when the finite element method

is used to discretize the space domain for time dependent partial differ-

ential equations. Simple modifications to the subroutines given below

should permit solution of large problems arising in that fashion. We

40

note, however, that it is not convenient to store synmetric matrices

in this form unless all nonzero elements are stored. Storage of only

the elements of the lower triangular matrix requires one to reference

columns of the matrix, which are not readily accessible. Even if the

entire matrix is stored, total storage requirements for matrices arising

in finite element applications is still considerably less with this

scheme than that required by symmetric band storage mode [5],

41

ICO

110

120

DI
c:
IN
CA
CA
CA
DA
CA
DA
\
NF
JE
DC
Y(
DC
A(
e(
JN
DC
JS
PR
PR
pp
PR
CA
PR
ST
C C
FO
FG
FC
FC
FN

NENSIC* Y(7,6),M126),Yl(6),AD(12),ri r, (12),JSC(7),JNC(12)
MM3N /CATA/A(12),B<12),N,JS17),JN(12>
TEGER+2 JS.JN
TA T,TEi\D,F,JSKF / . ,2 50 . , 1 . E-5, /
TA JSC/1,4,6,7,<;,11,13/
TA JNC/1,3,5,2, 1,3,4, 1, 5,2,6, 4/
TA AP/7.,-3.,-l.,8.,2.,l.,5.,-3.,4.,-l.,6.,-2./
TA BC/.2,.l,-.2,3.,l.,l.,2T.,10.,o.,5.,lC0.,57./
TA YT/1000.,0.,-2 5.,10. , J., -1000./

1 = l\

= JS
100

1.1)

110
I) =

I) =

(I)
=

120
(I)

=

INT 4
TNT 5
INT 7

INT 6
LL SO
INT 3
CP
GKATt
RMAT(
R"AT(
SMAT(
RMAT(

- 1

)

* 1

C(NP1)
I = 1.N
= Y I (I

1=1, JE
AC(I)

ecn)

JNCd
I = 1 , N P

JSC(T
,N, (JS
,(J|\(I
,(A(I)

,<e(i)
ESOL (Y
,JSKF

•CRETLCN FROM SCESOL vnI I T H JSKF =
• ,1 4

)

' FJR THIS CASE \= ,
I I3//' THE JS ARP. «Y ' //(1 2T 10))

/•OTFE J.N APRAY«//(12I10))

/'OTFE 3 ARRAY'//(12F10.2))

/OTFE A ARRAY'//(12F10.2)

)

)

1

)

(I)

),I
,1 =

,1 =

,YL

,1=1, NP1

)

= 1 , J E)

If JE)
1 ,JE)
, T,TEN!D,.N,0»\t JSKF,6, l,H,l.E-h,U5.,l.E-4,<0

300
400

SI
CC
IN
CI
CC
CY
JE
JE
DC
CY
CC
CC
R E
EN

BrtZiUT

TECER
MENSI
400

(I)
=

= JS
- JS
300

(I) =
NTINU
MTINL
TURN
C

IN C

/CAT
*2 J
CN Y
1 = 1.
C.

(I

)

(1 + 1

J=JE
CY(

c

CIFCJN (Y,YL,7,HINV,DY)
A/M 12) ,B(12),N, JS(7), Ji\M 12)
S, JN
(7,1), YL(1) ,DY(1)
N

) - 1

»JE
I) + Y<2, JN(J))*A(J)*HInV + ?(J)*Y(1, JN< J))

.
(PW,DY,F1,N,NY,EP'S,YVHX,N?WPW,KR

CCMMDN /CAT«/A(12) ,B(12),ND, JS(7) ,JN(12

)

SUBROUTINE NUITSL

INTEGER +2 JS.JN
DIMENSION P«(l) ,CY(1) ,F1(1), Yf'AX(1)
CATA CMEC-»C*EGM /1. 05, .05/
KRET =
EFSS = EFS**2
EFSA2 = EP5S*.0001
NCIT = N
CC 100 1=1. NY

100 Fid) = CY t I)/Ow(JS 1 1))

CC 300 IT=1,NCIT
RCh = 0.
CF = 0.
CC 200 1=1, NY
JS = JS(I) + 1
JE = JS(I+1) - 1

FN: = DY(I)
IF(JB.GT.JE)GC Tj 18C
CC 150 J=JE,JE

150 FN = FN - Pfc(J) *F1(JN(J))

130 FN --- FN/FW(je-l)
FN = F\4C*EG - Fl (I)*GMEGM1
flCH = Fill) - FN

42

O = CH (fiCH/Y^AXt I))**2
RCH = »CH + (ACH/AMAXiUBS (FN), EPS I

)

200 Fill) = FN
IF(RCH.LT.EPSS) RETURN
IF(CH.lT.EPSA2) RETURN

300 CCNTINUE
K9ET = 1

RETURN
ENC

*2

ICO

3 I SPOUT I NE JACMAT(Y.YL,T,HIN\/,A2,N,NY,EPS,CY,F1,PW)
CCMHCN /CAT A/41 12), 6(12) , NDUP, JS (7) , JN (12

>

INTEGER*2 JS,JN
CINENSICN Y(7,l),YL(l),Fl(l),CY(l),PW(l)
AK * -A2*HINV
JE = JS1N+1) - 1

CC 100 J=1,JE
PW(J) = AH*MJ) + B(J)
RETURN
END

43

Example 4: This example arises from a nonlinear reactor dynamics

problem where the finite element method is used to discretize the space

domain. The resulting system of equations has the form

Ay-By + w(C y) y = ,

where C is a matrix with three subscripts. The i— equation can be

expressed as

N . _ N N __
7 (a. y.-b. y.)+w > 7 c. .. y . y. = .

J=l J
J

J
J

J=l k=l J J

In this example N = 28 , and there are at most seven nonzero elements

per row in A and B . The nonlinear term y . y, appears only if
J K

both a. . and a,, are nonzero. Therefore a different type of sparse

matrix storage is used for this problem.

An array, K , dimensioned (28, 7) is used to store (for each row),

the columns subscripts for the nonzero elements. For convenience in

accessing the diagonal element, we require that K(i,l) = i . We can

note this matrix is simply the connectivity matrix for the finite

element grid. Then the nonzero elements of A and B , are stored in the

corresponding portions of the arrays A and B respectively. If there

are in fact less than seven nonzero coefficients in a row, the remaining

K(i,j) are set to zero.

The storage for C is somewhat more complicated. C is symmetric

(invariant under any permutation of subscripts) . The nonlinear term of

the i— equation was rewritten as

44

N N _ N N

V I I c y, yk
= w I I d y y ,

j=l k=l
1JtC J k

j=l k=j
1Jk J k

where

k < j

\jk
=

Pijk k =
J

7
ijk

+ C
ikj

k >
J '

The coefficients d are then stored in a (28,28) array C in the

order the second and third subscripts are given here.

(K(i,l), K(i,l)) (K(i,l), K(i,7)), (K(i,2), K(i,2)), ..., (K(i,2),

K(i,7)), (K(i,7), K(i,7)) .

The equations can then be written in the form

7 7 7

^ [A
iJ ^(i,j) " B

ij yK(i, j)
] +

.1. J.
C
im.

k ^(1,1) yK (i,k) " °

where

jk 2

Because of the large amount of data for this problem the input

arrays K, A, B, and C are simply listed along with the programs for

this example.

45

110

120

130

135
140

c
3

10
11
12
13
14
15

CIMENSICN Y<7.28) ,WS<560>
CC^MON /CATA/A<28,7),B<28,7),C<2e,28),iN,NNZ,K<28,7>
INTEGER*2 K
CAT A TFNO tKHINtHM^X, EPS* ZOM EGA/. 1,1. E-12t.lt.01 t 650. 903E-14/
CATA NN',NY,NL/28,28,G/
NNZ = 7
CALL ERRSET(2G7,256, -1,11
CALL ERPSET(2C8,256,-i,l)
N = NN
¥ = N
NENC = NNZ*(NNZ l)/2
FRINT 10
CC 110 1=1, NN
READ 1,(K(I.J)

f
J=l,NNZ)

FRINT H,(K(I,J) ,J=1,NNZ)
"PINT 12
CC 120 1=1. NN
READ 2. (A(l ,J) ,J=1,NNZ)
>(It I) = 0.
PRINT 15,(A(It J»

»

J=1,NNZ)
Y(l,l) = 1.E16
PRINT 13
CC 130 1=1, NN
READ 2, (E(I, J),J=1,NNZ)
PRINT 15 , (e < I , J) , J = 1,NNZ)
PRINT \h
CC 140 1 = 1, NN
READ 2, (C(I,J),J=1,NEND)
CC 135 J=1.NEN0
C(I,J) = C (I , J) *ZGMEGA
PRINT 15,(C(I,J), J=1,NEND)
JSKF =

T = 0.
H * HI*IN*1000.
CALL SDESOL(Y,YL,T,TEND,NY,NL,K, J C KF, 6,1,1-, HMN.HMAX, EPS. «<)

PRINT 3, JSKF
STCP
FCRMAT(1615)
FGRMAT(7E11.4)
FCPMATCO JSKF = •, 13)
FCRMATf 'IK ARRAY' /)
FCRMAT(8X,14I8)
FCRMAT(///'OA(I, J)•/)
FCRMAT<///«Oe<I ,J)'/)
FCPMAT(///'OC(I,J) '/

)

FCRMAT(8X,1F7E16.6)
END

SLBROUTINE CIFFUN(Y,YL,T,HINV,DY)
CCMMGN /CAT A/ A (28, 7) ,6(28, 7),C(28,28) ,N»NNZ,«(28, 7)
INTEGER*: K
DIMFNSKN Y(7,l) , YL(1) ,DY(1)
CO 400 1 = 1,

N

CY(I) = 0.
CO 300 J=1,NNZ
IF(K(I, JJ.LE.OJGC- TO 310
OY(I) = CY(I) + Y(2,K(I, J))*A(I , Jl+HINV

1 C(I,J)+Y(1,K(I,J))*Y(1,K(!,1))
30C CCNTINUE
310 L = NNZ

CC 360 J1=2,NNZ
IF (K(I, JD.LE.OJGC TO 400
DC 350 J.~ = J1,NNZ
L = L + 1

IF(K(I, J2).LE.0)G0 TO 350

BU,J)*Y(1,K< I, J)) +

DY(I) = CY(I

)

350 CCNTINUE
360 CCNTINUE
400 CCNTINUE

RETURN
END

+ C (I ,L)*Y(l,Kt I, Jl))*Y(1,K(T , J2)

)

SLePOUTINE JACMAT(YtYL,TtHINV,A2tN,NY,EPS,CY,Fl,PW)

46

96
99

ICO

200

3G0

280
281

285

287

288

COMMON /CATA/A<28,7),B(28,7),C<28,23),NO f NNZ,K(28,7)
INTEGERS K,P
DIMENSION V(7tl).VLIll,Fl(l) ,DY < 1) , PW (NY , 1)

CIPENSI1N P(7,7)
CATA P/49*0/,lNITP/0/
IF(INITP.EC.NNZ)GO TQ 99
IMTP = NNZ
CO 98 1=1, NNZ
CC 98 M = L,NNZ
P(L,M) * ft + (L
CCNTINUE
AH = -A2*HNV
CO 300 1 = 1, NY
DG 300 J=1,NNZ
PWU ,J) = Ah*A(I, J)
CC 100 L=1,J
IF(K(I,U.LE.0)GO
PU(I,J) = PMI.J) + C(T ,P(L, J))*Y(1,K(!,L))

CO 200 N=J,NNZ
IF(K(I,y).LE.OJGC

PfcU, J)

1)*(2*NNZ - L)/2

- b(:, j)

TO 295
+ C(T ,P(L, J))*Y(1,K(I

PkU ,ji
CCNTINUE
CCNTINUE
RETURN
END

TO 295
+ C(I ,P(J,Vt))*Y(1,K(I ,M>)

SUBROUTINE NUITSl (Pd ,0Y

,

c 1 , N, NY , EPS , YMAX

,

NEWPW, KRET)

DIMENSION PMNY.l) ,DY(1) , F I (1) , YMAX (1

)

CCPMCN /CATA/A<28,7),B(28,7),C(23,28>,'J0,NNZ,M23,7)
CATA SPC,SPCI"l/l.05,.05/
INTEGEP*2 K
KR£T =
INTEGEP*2
KRE""" =
EFSS = EFS**2
EPSA2 = FPSS+.0001
NCIT = N
CC 281 1 = 1, NY
Fl(I) = CY(I)/PW< 1,1)
CC 287 17 = 1, NOTT
RC(- = 0.
CI- = 0.
CO 285 1=1, NY
FN = DY(I)
CG 284 J=2,NNZ
IF(K(I, J J.LE.O.OP.KC, J).GT.
FN = C N - PMI, J)*FHK< !, J))

284 CONTINUE
FN = FN/FM! ,1)
FN = FN*SPb
ACH = Fid)

CH = CK
PCH = R_
Fl (I) = FN
IF(RCH.LT.EPSS)Gn
IF(Ct-.LE.EPSA2)GQ
CCNTINUE
KRET = 3
CCNTINUE
RETURN
END

,J).GT.NY)GO TJ 284

SPOyi*Fl< I)
:
1 (I) - FN

* * (ACH/YMAX(I))**2
5CF + (ACH/AMAX1(A6S(FN
» FN

),EPS) 1^*2

TG
TO

288
288

47

INPUT CATA FOR EXAMPLE 4

1 6 2

2 1 6 7 8 3
3 2 8 4
4 3 £ 9 10 5
5 4 1C 21
6 11 7 2 1
7 2 6 11 12 13 a
8 3 2 7 13 9 4
9 4 8 13 14 15 10

10 5 4 9 15 22 21
11 6 16 12 7
12 7 11 16 17 18 13
13 8 7 12 18 14 9
14 9 13 16 19 20 15
15 10 9 14 20 23 22
16 11 28 17 12
17 12 16 28 27 18
18 13 12 17 27 26 19
19 14 18 26 25 20
20 15 14 19 25 24 23
21 5 1C 22
22 21 10 15 23
23 22 15 20 24
24 23 20 25
25 20 19 26 24
26 19 16 27
27 18 17 28 26
28 16 27 17

14

8.3776E 02 8.3776E 02 4.1888E 02 0.0 0.0 0.0 0.0
5.0265E 03 4.1888E 02 2.0944E 03 2.5133E 03 2.0944F 03 4.1888E 02 0.0
1.6755E 03 4.1888E 02 1.6755E 03 4.1888E 02 0.0
5.0265E 03 4.1888E 02 2.0944E 03 2.5133E 03 2.0<
1.4661E 03 4.1888E 02 1.4661E 03 3.14166 02 0.0 0.0 0.0
5.0265E 03 4.1888E 02 2.0944E 03 2.5133E 03 2.0944E 03 4.1888E 02 0.0

_ 03 4.1888E 02 1.4661E 03 3.1'

_

1.C891E 04 2.<322E 03 4.1888E 03 2.0944E 03 8.37765 02 0.0 0.0
2.8484E 04 2.5133E 03 4.1888E 03 6.2832E 03 6.7021E 03 6.2832E Oi 4.1883E 03
2.1782E 04 1.6755E 03 2.0944E 03 4.1888E 03 5.8643E 03 4.16886 Oi 2.0944E 03
2.6464E 04 2.5133E 03 4.1888E 03 6.2832E 03 6.7021E 03 ^>.2832E 03 4.18385 03
1.9C59E 04 1.4661E 03 2.0944E 03 4.1888E 03 5.13135 03 3.1416E 03 1.5708E 03
2.3457E 04 2.«322E 03 5.0265E 03 8.3776E 03 6.2832E 03 0.0 0.0
5.3616E 04 6.7C21E 03 8.3776E 03 1.0472E 04 1.C891E 04 1.0472E 0-* 8.3776E 03
4.6914E 04 5.8642E 03 6.2832E 03 8.3776E 03 1.0053E 04 8.3776E 03 6.2832E 03
5.3616E 04 6.7021E 03 8.3776E 03 1.0472E 04 1.C891E 04 1.0472E 04 6.3776E 03
4.4663E 04 5.1313E 03 6.2832E 03 8.3776F 03 8.9535E 03 8.4823E 0-. 6.2046E 03
3.2515E 04 5.0265E 03 5.1836E 03 1.0812E 04 1.0472E 04 0.0 0.0
5.62C8E 04 1.C891E 04 1.0812E 04 1.1958E 04 1.1958E 0* 1.0812E 04 0.0
8.0582E 04 1.0052E 04 1.0472E 04 1.0812E 04 1.33125 04 1.3212F 04 2.12845 04
5.62C8E 04 1.0891E 04 1.G312E 04 1.1958E 04 1.1958E 04 1.0612E 0* 0.0
6.C750E 04 8.S535E 03 1.0472E 04 1.0812E 04 9.2481E 03 1.0348E 04 9.8764E 03
3.7699E 03 3.1416E 02 1.5708E 03 1.8850E 03
2.9531E 04 1.6650E 03 3.141&E 03 6.2046E 03 8.7179E 03
6.1889E 04 e.7179E 03 8.4823E 03 9. 6764E 03 1.2468E 04
6.33035 04 1.2466E 04 1.03V8E 04 8.8357E 03
5.7962E 04 9.2481E 03 1.1958E 04 1.4726E 04 8986575 03
5.4719E 04 1.1958E 04 1.3312E 04 1.7671E 04
9.4719E 04 1.3312E 04 1.1958E 04 1.4726E 04 1.7671E 04
5.3014E 04 5.1826E 03 1.4726E 04 1.1958E 04
1.5816E 09 1.1720E 09 1.0449E 09 0.0 0.0 0.0 0.0

1.0449E 09 0.0
0.0 0.0

3.9622E 09 1.0449E 09 6.3535E 08 4.4338E 09 6.3535E 08 1.0449E 09 0.0
4.3361E 09 1.0449E 09 1.8355E 09 1.4879E 09 0.0 0.0 0.0
6.7925E 09 4.560SE 09 6.7778E 09 6.35355 08 1.1720E 09 0.0 0.0
1.5222E 10 4.4338E 09 6.7778E 09 1.90616 09 1.1212E 10 1.9061E 09 6.7776c 09

-1.5816E 09 1.1720E 09 1.0449E 09 0.0 0.0
-3.9622E 09 1.04495 09 6.3535E 08 4.4338E 0* 3.3535E 08
-3.1631E 09 1.0449E 09 2.3440E 09 1.0449E 09 0.0

-1.3585E 10 2.2440E 09 6.3535E 08 6.7778E 09 9.12185 09 6.77785 05 6.3535E 08
-1.5223E 10 4.4338E 09 6.7778E 09 1.9061E 09 1.1212E 10 1.90615 09 6.7778E 09
-2.4104E 10 1.8355E 09 6.3535E 08 6.7778E 09 7.3355E 09 8.44466 09-6.0318E 08
-1.3995E 10 4.E609E 09 7.9498E 09 1.3556E 10 1.9061E 09 0.0 0.0
-2.9627E 10 1.1212E 10 1.3556E 10 3.1768E 09 1.7989E 10 3.17666 09 1.3556E 10
-2.7989E 10 9.1218E 09 1.9061E 09 1.3556E 10 1.5900E 10 1.3556E lu 1.9061E 09
-2.9627E 10 1.1212E 10 1.3556E 10 3.1768E 09 1.7989E 10 3.1768E 09 1.3556E 10
-4.8828E 10 7.3355E 09 1.90616 09 1.3556E 10 1.0212E 10 1.16215 10 2.04066 09
-3.5210E 10 7.9498E 09 1.3692E 10 1.6043E 10 3.1766E 09 0.0 0.0
-8.2408E 10 1.7989E 10 1.6043E 10-3.6945E 08 2.40606 10 1.31036 1C 0.0

48

-7.2221E
-8.24C3E
-8.7119E
-8.2637E
-4.7C95E
-1.01266
-1.32805
-1.2246E
-1. 5263E
-1.4877E
-7.4644E
4.1888E
4.1388=
0.0
0.0
2.5123E
1.3S63E
0.0
2.2340E
8.3776E
1.39636
2.7925E
0.0
2.5123E
1.3963E
0.0
2.2240E
4.18885
1.3963E
0.0
0.0
6.70215
1.2566?
5.5850=
1.1170E
1.6755E
8.3776E
1.11705
2.2340=
1.3404E
5.56506
0.0
1.9548E
1.6755E
8.3776=
1.1170E
2.2340E
6.7C21E
2.7925E
0.0
1.9548E
1.4242E
1.1170E
1.9548E
2.0718E
3.1835E
5.5132E
1.9548E
2.9G95E
2.8484E
2.23406
0.0
4.46805
3.1835E
2.5133E
1.9549t
3.9095E
1.42426
1.1170E
0.0
4.46806
1.3822E
1.95486
0.0
4. 747 3E

10 1

10 1

10 1

09 I

10
11
11
11
11
11
10 1

02
02

03
02

C?
02
02
02

03
02

03
02
02

5
2

2

9
2
>

6
o
o
2

6
9
2

02 2
03 1

02
o:
04
02
02
C3
04
02

03
04
02
03
03
03
02

03
04
03
03
03
04
03 1

03
03 4
04
03 1

02 4
04 5
03 1

03
03 4
04
03 1

03
04
03

03

.59CCE

.7989E

.021 2E

.4879E

.89535

.40C5E

.6822E

.4796E

.406CE

.14765

.2692?

.5850E

.7925E

.C

.0

.0

.7925E

.0

.7738E

.7925E

.79255

.0

.0

.c

.79255

.0

.77386

.7925E

.7925E

.0

.C

.2340E

.U70E

.0

.7925E

.23406

.5S50E

.0

.7925E

.0

.7925E

.C

.513 26

.2340E

.5650E

.0

.7925E

.0

.7925E

.C

.2566E

.0

.c

.0

.2 736E

.565CE

.2962E

.0

.46805

.0

.1170E

.0

.1388E

.5850E

.29 6 2E

.C

.46805

.0

.1170E

.C

.0944c

.0

.0

.0

.0492E

10
10
10
09-
09
08
09
10-
10
10
10
02
02

02

02
02
02

02

32
02
02

03
J3

02
02
02

03

02

03
03
02

02

03

03
03
03

03

03

03
03
03

03

03

J 3

03

3.1768E 09
1.3103E 10
3.1768E 09
6.0318E 08
8.4446E 09
1.1621F 10
2.4658E 09
3.6945E 08
1. 1476E 10
2.406JE 10
3.3929E 09
2. 7925E 02
0.0
0.0
0.0
8.3776E 02
0.0
0.0
0.0
1.U70E 03
0.0
0.0
0.0
8.3776E 0?
0.0
0.0
0.0
5.5850E 02
0.0
CO
0.0
1.9548E 03
CO
0.0
0.0
1.3963E 03
0.0
CO
1.39636 03
1.1170E 03
0.0
0.0
1.1170E 03
1.3963E 03
0.0
0.0
1.3963E Oj
1.1170E 03
CO
CO
0.0
2.9095E 03
CO
0.0
0.0
2.0716E 03
0.0
0.0
2.2240E 03
2. 79 2 56 03
0.0
CO
1.9548E 03
3.0718E 03
CO
CO
2.2 340E 03
2.7925E 03
0.0
0.0
0.0
CO
CO
0.0
CO

1.31035
2.*060c
1.60436
2.89 5 3F
2.04095
1.3398E
2.3750=
7.2533E
•2.5688E
3.3929E
-3.6945F
0.0
0.0
0.0
0.0
J.O
0.0
5.5850E
8.3776E
2.7925F
0.0
0.0
0.0
0.0
0.0
5.58505
3.37765
0.0
0.0
0.0
0.0
3.37765
0.0
1.3963E
1.U70F
2.513 35
0.0
1.95485
6.42285
1.9549E
0.0
8.3776E
0.0
2.5132E
0.0
1.95436
6.4228E
1.95486
0.0
3.3776F
0.0
3.&303F
1.1170E
0.0
2.7925F
4.1868E
0.3
3.63035
1.0612c
3.6303E
0.0
2.5133E
0.0
4.18885
0.0
3.6303E
1.0612E
3.6303E
0,0
2.51335
0.0
0.0
1.9548F
0.0
4.4680E

10 1,
10-3,
1.0

39
9

10
in
09 2.3750E 10
09
09-
08

.147bE 10
!. 69455 08
1.47986 10

..4C055 08
h. 68226 09

1.14765 10 1.62606 10
1.6C43L 1C CO
3.46585 09 1.33986 1C

3.56885 09

5

02 1

02 1

02

1

5

02 1

02 1

J

6

2
2
4

1

1

2

2

2

02 1

->

2

2

03
03
03

03
02
03

Oj

03
02
03

03
3

02
03

02
04
03

03

03

03
04
03

03

03

Oi

.0

.0

.0

.0

.58505 02

.0

.1170= Oj

.39636 02

.C

.0

.3963F 02

.0

.585CE 02

.0

.1170F 03

.3963= 02

.0

.0

.0

.0

.0

.0

.98135 02

.0

.0

.0

.65295 03

.6529E 03

.46806 03

.0

.67556 03

.67555 03

.0

.0

.65296 03

.65296 03

.23406 03

.0

.6755= 03

.0

.51226 03

.0

.3510F 03

.C

0.0
CO
0.0
0.0
0.0
2.7925-
5.56505
5.585C6
0.0
0.0
0.0
0.0
CO
2.7925c
5.56506
5.56505
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.22405
0.0
0.0
2.5133 =

1.9548E

1

02 9
02
02

02

02
C2
02

03

02
3

.22845 03

.32346 0?

.81912 03

.0

.35iOE

.25105

.0

.0

.3284E 03

.3234E 03

.9C95E 03

.0

.3510= 03

.0

.ie886 03

.0

.37366 03

.0

1.9
1.1
l.«
2.2
0.0
0.0
2.5
0.0
9.2
1.1
0.0
CO
2.5
1.3
0.0
2.9
0.0
0.0
4.1
2.6
6.1
1.9
4.4
3.9
O.C
CO
4.1
0.0
2.5
1.9
0.0
0.0
4.1
2.2
0.0

548^
1705
5*86
240E

0;
02
03
Oj

6

2 1

Oj 1

1

1336 03

7766
17CE

1325
9625

o:
Oj

0:
Co

J9 1

88 8 6

2026
4265
548E
6d05
0956

5

6

c

2

03 2

3

Oj 1

05 2
Oj 2

03
02 5

03 2

8886 Cj

1322
5485

88 86
240c

Oj
0.

Oj
Oj

.0

.396:

.0

.0

.0

.77366 02

.0

.0

.0

.27766 02

.0

.0

.0

.7738E 02

.0

.0

.0

.1336= 02

.0

.0

.0

.6755E 03

.0

.0

.29625 03

.67555 02

.0

.3058= 03

.3 7 76 5 2
,9813t 02
.0
.81515 02
.3962c 03
.67556 03
.0
.3053E 03

198136 02
.0
.0
.0
.09445 03
• u

.0

.0719E 0?

.35106 01

.0

.03325 04

.5132= 02

.3726= 03

.0

.16625 03

.U7185 03

.351C6 03

.0

.03325 04

.0

.3736E 03

.0

.0
.0
.0
.0
.0

49

1.4242E 04 8.9361E
8?

4.7473E 03 0.0 0.0 4.7473E 03 0.0
4.1868E 03 2.234CE 0.0 0.0 0.0 0.0 2.3736E 03
0.0 0.0 Q.O

O.O
0.0 0.0 0.0 CO

0.0 0.0 0.0 2.3736E 03 2.22 40E 03 0.0
2.7646E 04 0.0 4.4680E 03 0.0 0.0 0.0 4.1888E 03
3.9095E 03 1.95485 03 0.0 0.0 0.0 1.02 32E 04 4.0492E 03
0.0 0.0

0.0
0.0 4.188eE 03 2.3736E 03 0.0 0.0

6.9813E 03 0.0 0.0
8:8

0.0 1.7872E
0.0

04
1.4242E 04 e.9361E 03 4.7473E 03 0.0 4.7472E Oj
4.1888E 02 2.234CE 03 0.0 0.0 0.0 0.0 2.3736E 03
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 2.3736E 03 2.22 40E 03 CO
1.3823E 04 O.C 4.4680E 03 0.0 0.0 0.0 0.0
1.9548E 03 1.9548E 33 0.0 0.0 0.0 4.1888E 03 4.0492E 03
0.0 g.o

0.0
0.0 4.1888E 03 2.3736E 03 0.0 0.0

6.9813E 03 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 O.Q

0.0
0.0 0.0

g.o
0.0

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 CO
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0
0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 CO 0.0 0.0 0.0 0.0

Q.O
0.0

0.0 0.0 0.0 0.0 0.0 0.0
o.o Q.O

0.0
0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 CO
0.0
0.0

O.C 0.0 0.0 0.0 O.C 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 CO
0.0 0.0 CO 0.0 0.0 0.0 0.0

8:8
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.0 O.C CO 0.0 0.0 0.0 0.0
0.0 O.C 0.0 0.0 0.0 0.0 0.0
0.0 O.C 0.0 0.0 0.0 0.0 0.0
0.0 O.C 0.0 0.0 O.Q

0.0
0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 3.0 0.0 0.0 0.0

50

References

1. R. L. Brown and C. W. Gear, "Documentation for DFASUB - a program
for the solution of simultaneous implicit differential and nonlinear
equations," Report no. UIUCDCS-R-7 3-575, University of Illinois at

Urbana - Champaign, Urbana, Illinois, July 1973.

2. C. W. Gear Numerical Initial Value Problems in Ordinary Differential
Equations , Prentice-Hall, Englewood Cliffs, NJ, 1971.

3. C. W. Gear, "Simultaneous Numerical Solution of Differential-Algebraic
Systems," IEEE Trans, on Circuit Theory, CT-18(1971) 89-95.

4. F. G. Gustavson, "Some Basic Techniques for Solving Sparse Systems

of Linear Equations," pp 41-52 in Spars e Matrices and Their Applications ,

D. J. Rose and R. A. Willoughby, eds., Plenum Press, New York -

London, 1972.

5. D.Salinas, D. H. Nguyen, R. Olsen, and R. Franke "An Optimal Compact

Storage Scheme for Nonlinear Reactor Problems by FEM," Manuscript

(to be submitted)

.

51

Distribution List

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Library
Naval Postgraduate School
Monterey, CA 93940

Dean of Research
Naval Postgraduate School
Monterey, CA 93940

Naval Postgraduate School
Department of Mathematics
Ladis D. Kovach, Chairman
Professor C. Comstock
Professor F. Faulkner
Professor R. Franke

Naval Postgraduate School
Department of Mechanical Engineering
Professor D. Salinas
Professor D. Nguyen
Professor R. Newton
Professor G. Cantin

Naval Postgraduate School
Department of Aeronautics
Professor D. Collins
Professor R. Ball

No. of copies

12

1

1

1

10

Naval Postgraduate School
Computer Center
Monterey, CA 93940
Professor D. Williams
Mr. Roger Hilleary

Dr. Richard Lau
Office of Naval Research
Pasadena, CA 91100

Chief of Naval Research
ATTN: Mathematics Program
Arlington, VA 22217

52

Mr. W. J. Dejka, Code 4000 1

Naval Electronics Laboratory Center
San Diego, CA 92152

Argonne National Laboratory
Argonne, IL 60439
ATTN: Mr. Gary Leaf, AMD 1

Mr. Tilak Chawla, RAS 1

Professor C. W. Gear 1

University of Illinois
Urbana, IL 61801

Dr. A. C. Hindmarsh 1

Lawrence Livermore Laboratory
Livermore, CA 94550

Sandia Laboratories
Albuquerque, NM 87115
ATTN: D. A. Dahlgren 1

L. F. Shampine 1

Mr. R. E. Huddles ton 1

Sandia Laboratories
Livermore, CA 94550

Air Force Weapons Laboratory
Kirtland AFB
Albuquerque, NM 87115
ATTN: C. M. Walters 1

CAPT. C. W. Stein

Mr. R. D. Birkhoff 1

Oak Ridge National Laboratory
Union Carbide Corporation
P. 0. Box X
Oak Ridge, TN 37830

Mr. R. M. Sternheimer 1

Brookhaven National Laboratory
Upton, NY 11973

Mr. B. F. Maskewitz 1

RSIC, Neutron Physics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831

Mr. J. L. Black 1

U. S. Naval Research Laboratory
Code 770

Washington, DC 20390

53

Los Alamos Scientific Laboratory
P. 0. Box 1663

Los Alamos, NM 87544
ATTN: S. Evans, T-6 1

C. Young, J-14 1

Professor R. E. Barnhill 1

Department of Mathematics
University of Utah
Salt Lake City, Utah 84112

LT Donald Hinsman
Fleet Numerical Weather Central
Monterey, CA 93940

54

U173475

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01071186 4

